Article | . 2018 Vol. 36, Issue. 2
Development of Nutrient Solution for in vitro Propagation of ‘M9’ Apple Rootstock Plantlets



Division of Animal, Horticultural and Food Sciences, Chungbuk National University1
Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University2




2018.. 202:214


PDF XML




This study was conducted to evaluate the performance of a newly-developed nutrient solution for apple plantlets (NAP) and to determine the proper electrical conductivity (EC) for the acclimation and growth of in vitro apple plantlets (IAP) in a closed-type plant production system to produce virus-free apple seedlings. IAP treated with pre-acclimation for one week were transplanted to a deep flow technique system supplied with several different concentrations (EC 0.5, 1.0, 2.0 and 3.0 dS·m-1 ) of Hoagland nutrient solution (HN) and NAP. Some of the NAP treatments with EC 0.5 dS·m-1 (NAP0.5) were increased to EC 2.0 dS·m-1 at two (NAPex2) and four weeks (NAPex4) of transplanting. IAP were acclimated gradually under reduced relative humidity (RH, 90%-80%-60% at two weeks interval), air temperature at 25°C, 60 μmol·m-2 ·s-1 of PPFD (fluorescent lamps), and a 16-hour light period for six weeks after transplanting. The survival rates tended to decrease with increasing EC levels in both HN and NAP. Although there was no significant difference between the shoot growth characteristics of HN and NAP, root growth characteristics of NAP was significantly higher at four weeks after transplanting. Shoot and root growth characteristics of the lowest EC (0.5 dS·m-1 ) were high at the initial acclimation stage and tended to increase with higher EC levels at the later acclimation stage. In both NAPex2 and NAPex4, the growth rate tended to increase after increasing the EC level, but the growth rate of NAPex2 decreased at four weeks after transplanting. The mineral contents of HN and NAP treatments were slightly different but the mineral absorption rate remained constant. These results suggest that if NAP is supplied at the proper EC level according to acclimation stage, it can alleviate the poor root development of IAP and contribute to successful acclimation.



1. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot 91:179-194. doi:10.1093/aob/mcf118  

2. Cembali T, Folwell RJ, Wandschneider P, Eastwell KC, Howell WE (2003) Economic implications of a virus prevention program in deciduous tree fruits in the US. Crop Prot 22:1149-1156. doi:10.1016/S0261-2194(03)00156-X   

3. Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615-1618. doi:10.1016/S0038-0717(98)00054-6  

4. Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P (2001) Detection of Sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis 85:1177-1180. doi:10.1094/PDIS.2001.85.11.1177  

5. Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16:691-720. doi: 10.1104/pp.16.4.691  

6. Díaz-Pérez JC, Sutter EG, Shackel KA (1995) Acclimation and subsequent gas exchange, water relations, survival and growth of micro-cultured apple plantlets after transplanting them in soil. Physiol Plant 95:225-232. doi:10.1111/j.1399-3054.1995.tb00831.x  

7. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097. doi:10.2307/3870059  

8. Dykyjová D (1979) Selective uptake of mineral ions and their concentration factors in aquatic higher plants. Folia Geobot Phytotaxon 14:267-325. doi:10.1007/BF02854394  

9. Gowing DJG, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus × domestica Borkh. J Exp Bot 41:1535-1540. doi:10.1093/jxb/41.12.1535  

10. Havlin JL, Soltanpour PN (1980) A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 11:969-980. doi:10.1080/00103628009367096  

11. Hazarika BN (2003) Acclimation of tissue-cultured plants. Curr Sci 85:1705-1712  

12. Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105-120. doi:10.1016/j.scienta.2006. 01.038  

13. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn 347  

14. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482-488. doi:10.1016/S1360-1385(00)01766-0  

15. Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New Forests 30:147-166. doi:10.1007/s11056-005-6572-z  

16. James DJ, Thurbon IJ (1979) Rapid in vitro rooting of the apple rootstock ‘M9’. J Hortic Sci 54:309-311. doi:10.1080/00221589.1979. 11514887  

17. Kadleček P, Tichá I, Haisel D, Čapková V, Schäfer C (2001) Importance of in vitro pretreatment for ex vitro acclimation and growth. Plant Sci 161:695-701. doi:10.1016/S0168-9452(01)00456-3  

18. Kim JH, Kim CC, Ko KC, Kim KR, Lee JC (1998) The particular of pomology, Ed 4. Hyangmunsa, Korea, pp 41-45  

19. Kjeldahl J (1883) A new method for the determination of nitrogen in organic matter. Anal Chem 22:366-382. doi:10.1007/BF01338151  

20. Ko SM, Lee JH, Oh MM (2018) Control of relative humidity and root-zone water content for acclimation of in vitro-propagated ‘M9’ apple rootstock plantlets. Hortic Environ Biotechnol. doi:10.1007/s13580-018-0038-7  

21. Kozai T (1991) Acclimation of micropropagated plant. In YPS Bajaj, ed. High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry, vol 17. Springer Berlin Heidelberg, Germany, pp 127-141. doi:10.1007/978-3-642-76415-8_8  

22. Landis TD, Tinus RW, McDonald SE, Barnett JP (1989) The container tree nursery manual: Vol 4, Seedling Nutrition and Irrigation. USDA Forest Serv Agric Handb 674, pp 119  

23. Lim YJ, Kwak TY, Kim DI, Kim MJ, Kim JK, Kim TC, No KM, Park YM, Park JK, et al. (2015) Apple luxury strategy. Se-Myeong Munhwasa, Korea, pp 119-125  

24. Martre P, Porter JR, Jamieson PD, Triboï E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol 133:1959-1967. doi:10.1104/pp.103.030585  

25. Maynard DG, Mallett KI, Myrholm CL (1997) Sodium carbonate inhibits emergence and growth of greenhouse-grown white spruce. Can J Soil Sci 77:99-105. doi:10.4141/S96-048  

26. Meijneke CAR, van Oosten HJ, Peerboom H (1973) Growth, yield, and fruit quality of virus-infected and virus-free golden delicious apple trees. Acta Hortic 44:209-212   

27. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410. doi:10.1016/S1360-1385(02)02312-9  

28. Oh MM, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578-583. doi:10.1016/j.plaphy.2009.02.008  

29. Park SY, Oh SB, Kim SM, Cho YY, Oh MM (2016) Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Hortic Environ Biotechnol 57:478-486. doi:10.1007/s13580-016-1060-2  

30. Pospíšilová J, Synková H, Haisel D, Semorádová Š (2007) Acclimation of plantlets to ex vitro condition: Effects of air humidity, irradiance, CO concentration and abscisic acid (a review). Acta Hortic 748:29-38. doi:10.17660/ActaHortic.2007.748.2  

31. Römer W, Schilling G (1986) Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 91:221-229. doi:10.1007/BF02181789  

32. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265-272. doi:10.1016/S0168-9452(00)00388-5  

33. Sgherri CLM, Navari-Izzo F (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant 93:25-30. doi:10.1034/j.1399-3054.1995.930105.x  

34. Shackel KA, Novello V, Sutter EG (1990) Stomatal function and cuticular conductance in whole tissue-cultured apple shoots. J Am Soc Hortic Sci 115:468-472  

35. Sharp RE, Davies WJ (1989) Regulation of growth and development of plants growing with a restricted supply of water. In HG Jones, TL Flowers, MB Jones, eds. Plants under Stress, Cambridge University Press, UK, pp 71-93. doi:10.1017/CBO9780511661587.006  

36. Steiner AA (1980) The selective capacity of plants for ions and its importance for the composition and treatment of the nutrient solution. Acta Hortic 98:87-98. doi:10.17660/ActaHortic.1980.98.7  

37. Taiz L, Zeiger E (2006) Plant physiology, Ed 4, Sinauer Associates Inc, USA, pp 97-121  

38. Theiler-Hedtrich R, Baumann G (1989) Elimination of apple mosaic virus and raspberry bushy dwarf virus from infected red raspberry (Rubus idaeus L.) by tissue culture. J Phytopathol 127:193-199. doi:10.1111/j.1439-0434.1989.tb01129.x  

39. Walkey DGA, Webb MJW (1968) Virus in plant apical meristems. J Gen Virol 3:311-313. doi:10.1099/0022-1317-3-2-311