Article | . 2018 Vol. 36, Issue. 2
Changes in Bioactive Components, Antioxidant Radical Scavenging Activities, and Cholinesterase Inhibition Activities in Periodically Harvested and Post-harvested Kiwifruits

Department of Horticultural biotechnology, Kyung Hee University1
Agricultural Research Center for Climate Change, National Institute of Horticultural and Herbal Science, Rural Development Administration2

2018.. 245:255


In kiwifruit, fruit maturity is critical to determine product quality and postharvest qualities. Although numerous kiwifruit studies have evaluated fruit quality and determined the right time harvest, few have investigated changes in the levels and activities of bioactive compounds, which lead to fruit maturation in postharvest storage. In this study, the golden kiwifruit ‘Jecy Gold’ was harvested at different levels of maturity and after different storage periods, and evaluated to determine the physicochemical properties and bioactivities. Kiwifruits collected later in the harvest and after longer storage times were sweet, had greater soluble solids contents, and were less hard compared to similar characteristics of common climacteric fruits. Levels of lutein, β-carotene, and total phenolics contents were significantly higher in earlier harvested kiwifruits, though no significant changes were observed during different storage periods. However, levels of vitamin C and total flavonoids fluctuated without directional changes. Fruits harvested earlier had higher levels of antioxidant and cholinesterase inhibition activity. Cholinesterase inhibition activity tended to decrease with increasing postharvest period. This decreasing pattern was not seen in later harvested fruits. Lutein and β-carotene seem to be produced in the early stages of fruit ripening, and are degraded or altered during fruit development. Cholinesterase inhibition was higher in early-harvested fruits, and steadily decreased during storage, suggesting that the bioactive component contributing to cholinesterase inhibition decreases during preharvest and postharvest fruit maturation.

1. Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M., Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60:3765-3779. doi:10.1093/jxb/erp218  

2. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200. doi:10.1038/1811199a0  

3. Burdon J, McLeod D, Lallu N, Gamble J, Petley M, Gunson A (2004) Consumer evaluation of “Hayward” kiwifruit of different at-harvest dry matter contents. Postharvest Biol Technol 34:245-255. doi:10.1016/j.postharvbio.2004.04.009  

4. Cano MP (1991) HPLC separation of chlorophyll and carotenoid pigments of four kiwifruit cultivars. J Agric Food Chem 39:1786-1791. doi:10.1021/jf00010a019  

5. Corrêa SF, Souza MSD, Pereira T, Alves GVDL, Oliveira JGD, Silva MGD, Vargas H (2008) Determination of thermal diffusivity in papaya pulp as a function of maturation stage. Rev Bras Frutic 30:611-615. doi:10.1590/S0100-29452008000300008  

6. Dall’Acqua S, Maggi F, Minesso P, Salvagno M, Papa F, Vittori S, Innocenti G (2010) Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia 81:1208-1212. doi:10.1016/j.fitote.2010.08.003  

7. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88-95. doi:10.1016/0006-2952(61)90145-9  

8. Eom SH, Reisch BI (2010) Quantificational analysis of NPT-II protein from genetically modified Vitis vinifera L. Afr J Biotechnol 9:3468-3474  

9. Farr J, Hurst S, Skinner M (2007) Anti-inflammatory effects of kiwifruit. Asia Pac J Clin Nutr 16:S73.  

10. Ferguson AR, MacRae EA (1991) Vitamin C in Actinidia. Acta Hortic 297:481-488  

11. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Comp Anal 24:1043-1048. doi:10.1016/j.jfca.2011.01.008  

12. Ghasemnezhad M, Ghorbanalipour R, Shiri MA (2013) Changes in physiological characteristics of kiwifruit harvested at different maturity stages after cold storage. Agric Conspec Sci 78:41-47  

13. Jabbar A, East AR, Jones G, Tanner DJ, Heyes JA (2014) Modelling batch variability in softening of ‘Hayward’ kiwifruit from at-harvest maturity measures. Postharvest Biol Technol 90:7-14. doi:10.1016/j.postharvbio.2013.11.008  

14. Jordan RB, Walton EF, Klages KU, Seelye RJ (2000) Postharvest fruit density as an indicator of dry matter and ripened soluble solids of kiwifruit. Postharvest Biol Technol 20:163-173. doi:10.1016/S0925-5214(00)00125-3  

15. Karimi G, Iranshahi M, Hosseinalizadeh F, Riahi B, Sahebkar A (2010) Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacologyonline 1:566-574  

16. Latocha P, Krupa T, Jankowski P, Radzanowska J (2014) Changes in postharvest physicochemical and sensory characteristics of hardy kiwifruit (Actinidia arguta and its hybrid) after cold storage under normal versus controlled atmosphere. Postharvest Biol Technol 88:21-33. doi:10.1016/j.postharvbio.2013.09.005  

17. Lim YJ, Oh CS, Park YD, Eom SH, Kim DO, Kim UJ, Cho YS (2014) Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci Biotechnol 23:943-949. doi:10.1007/s10068-014-0127-z  

18. Macrae EA, Lallu N, Searle AN, Bowen JH (1989) Changes in the softening and composition of kiwifruit (Actinidia deliciosa) affected by maturity at harvest and postharvest treatments. J Sci Food Agric 49:413-430. doi:10.1002/jsfa.2740490404  

19. Matsumoto S, Obara T, Luh BS (1983) Changes in chemical constituents of kiwifruit during post‐harvest ripening. J Food Sci 48:607-611. doi:10.1111/j.1365-2621.1983.tb10800.x  

20. Márquez CJ, Jimenez AM, Osorio C, Cartagena JR (2011) Volatile compounds during the ripening of Colombian soursop (Annona muricata L. cv. Elita). Vitae 18:245-250  

21. McGhie TK, Ainge GD (2002) Color in fruit of the genus Actinidia: carotenoid and chlorophyll compositions. J Agric Food Chem 50:117-121. doi:10.1021/jf010677l  

22. Minchin PEH, De Silva N, Snelgar WP, Richardson AC, Thorp TG (2003) Modelling of colour development in the fruit of Actinidia chinensis ‘Hort16A’. N Z J Crop Hortic Sci 31:41-53. doi:10.1080/01140671.2003.9514234  

23. Montefiori M, McGhie TK, Hallett IC, Costa G (2009) Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Sci Hortic 119:377-387. doi:10.1016/j.scienta.2008.08.022  

24. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289-300. doi:10.1016/j.phymed.2007.02.002  

25. Nishiyama I, Fukuda T, Oota T (2005) Genotypic differences in chlorophyll, lutein, and β-carotene contents in the fruits of Actinidia species. J Agric Food Chem 53:6403-6407. doi:10.1021/jf050785y  

26. Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T (2004) Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J Agric Food Chem 52:5472-5475. doi:10.1021/jf049398z  

27. Nováková L, Solich P, Solichová D (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Analyt Chem 27:942-958. doi:10.1016/j.trac.2008.08.006  

28. Ong BT, Nazimah SAH, Osman A, Quek SY, Voon YY, Hashim DM, Chew PM, Kong YW (2006) Chemical and flavour changes in jackfruit (Artocarpus heterophyllus Lam.) cultivar J3 during ripening. Postharvest Biol Technol 40:279-286. doi:10.1016/j.postharvbio.2006. 01.015  

29. Pal RS, Kumar VA, Arora S, Sharma AK, Kumar V, Agrawal S (2015) Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Braz Arch Biol Technol 58:262-271. doi:10.1590/s1516-8913201500371  

30. Park YS, Jung ST, Gorinstein S (2006) Ethylene treatment of ‘Hayward’ kiwifruits (Actinidia deliciosa) during ripening and its influence on ethylene biosynthesis and antioxidant activity. Sci Hortic 108:22-28. doi:10.1016/j.scienta.2006.01.001  

31. Richardson AC, McAneney KJ, Dawson TE (1997) Carbohydrate dynamics in kiwifruit. J Hortic Sci 72:907-917. doi:10.1080/14620316. 1997.11515583  

32. Ritenour MA, Crisosto CH, Garner DT, Cheng GW, Zoffoli JP (1999) Temperature, length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit. Postharvest Biol Technol 15:107-115. doi:10.1016/S0925-5214(98)00074-X  

33. Rivera‐Pastrana DM, Yahia EM, González‐Aguilar GA (2010) Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J Sci Food Agr 90:2358-2365. doi:10.1002/jsfa.4092  

34. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158.  

35. Srisook W, Lim CK, Oh EU, Yi K, Kumarihami HMPC, Kim SC, Park KS, Song KJ (2016) Defoliation time influences vine regrowth, off-season flowering, and fruit quality in ‘Jecy Gold’ kiwifruit vines. Hortic Environ Biotechnol 57:219-224. doi:10.1007/s13580-016- 0029-5  

36. Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L (2008) Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem 107: 282-288. doi:10.1016/j.foodchem.2007.08.015  

37. Zhang Y, Li P, Cheng L (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem 123:1013-1018. doi:10.1016/j.foodchem.2010.05.053  

38. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555-559. doi:10.1016/S0308-8146(98)00102-2