Article | . 2018 Vol. 36, Issue. 3
Reduced Ethylene Production in Tomato Fruits upon CRSPR/Cas9-mediated LeMADS-RIN Mutagenesis

Department of Horticultural Life Science, Hankyong National University1
Institute of Genetic Engineering, Hankyong National University2
Department of Horticulture, Chungnam National University3
Department of Chemistry, Hanyang University4

2018.. 396:405


Recent progress in genome editing methods has opened new opportunities for reverse genetics- based studies in plants. The clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genomic region of a variety of organisms including plants. Here, we described a high-frequency targeted mutagenesis utilizing Agrobacterium-delivered CRISPR/Cas9 in tomato. This system consists of an Agrobacterium binary vector and three guide RNAs for single gene targeting. We evaluated the system for its mutagenesis frequency and heritability using LeMADS- RIN gene of tomato. T0 transgenic events carrying mutations in the LeMADS-RIN gene occurred at rates over 10.6% mutants per transgenic event in both ‘Mamirio’ and ‘Golden Bell’ tomato genotypes. Three independent T1 transgenic lines and wild-type (WT) tomato plants were used for ethylene analysis. Compared with WT plants, edited mutants exhibited more incompletely-ripening fruits and lower ethylene contents. Following genetic combination through segregation, null segre-gants carrying only the desired mutant alleles without the CRISPR transgene could be retrieved among the T1 progeny. These Cas9/gRNA transgenic lines, therefore, can be used to convey the CRISPR- based mutagenesis by genetic cross to tomato lines that are not amenable to genetic transformation.

1. Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331-338. doi:10.1016/j.tplants.2004.05.004  

2. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954-2965. doi:10.1105/tpc. 105.036053  

3. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039- 2055. doi:10.1093/jxb/erf072  

4. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457-466. doi:10.1093/jxb/erf072  

5. Bae S, Kweon J, Kim HS, Kim J-S (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705-706. doi:10. 1038/nmeth.3015  

6. Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883-1897. doi:10.1093/jxb/erj020  

7. Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum L.) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936-947. 04384.x  

8. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327-1346. doi:10.1104/pp.106.092817  

9. Frary A, Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16:235-240. doi:10.1007/BF01890875  

10. Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194-3211. doi:10.1105/tpc.106.049817  

11. Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725-749. doi:10. 1146/annurev.arplant.52.1.725  

12. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell (Suppl) 16:S170-S180. doi:10.1105/tpc.019158  

13. Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283-289. doi:10.1016/j.pbi. 2007.04.008  

14. Hiwasa K, Rose JK, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564-572. doi:10.1034/j.1399-3054.2003.00064.x  

15. Ito Y (2016) Regulation of tomato fruit ripening by MADS-Box transcription factors. JARQ 50:33-38. doi:10.6090/jarq.50.33   

16. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76-82. doi:10.1016/j.bbrc.2015.09.117  

17. Jung YJ (2013) Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol Bioprocess Eng 18:616-625. doi:10.1007/s12257-013-0392-3  

18. Jung YJ, Bae S, Lee G-J, Seo PJ, Cho Y-G, Kang KK (2017) A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system. J Plant Biotechnol 44:89-96. doi:10.5010/JPB.2017.44.1.089  

19. Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923-941. doi:10.1105/ tpc.110.081273  

20. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187-1193. doi:10.2307/3869226  

21. Kim H, Kim S-T, Ryu J, Choi MK, Kweon J, Kang B-C, Ahn H-M, Bae S, Kim J, et al (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58:705-712. doi:10.1111/jipb.12474  

22. Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The Never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521-530. doi:10.2307/3869932  

23. Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, et al (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:750-769. doi:10.1104/pp. 105.063719  

24. Lincoln JE, Fischer RL (1988) Regulation of gene expression by ethylene in wild‐type and rin tomato fruit (Lycopersicon esculentum) fruit. Plant Physiol 88:370-374. doi:10.1104/pp.88.2.370  

25. Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351. doi:10.1186/s12870-014-0351-y  

26. Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G (2005) Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Bot 417:1877-1886. doi:10.1093/ jxb/eri177  

27. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948-952. doi:10.1038/ ng1841  

28. Matas AJ, Gapper NE, Chung MY, Giovannoni JJ, Rose JK (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20:197-203. doi:10.1016/j.copbio.2009.02.015  

29. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos RC (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58:4131-4146. doi:10.1093/jxb/erm271   

30. Nashilevitz S, Melamed-Bessudo C, Izkovich Y, Rogachev I, Osorio S, Itkin M, Adato A, Pankratov I, Hirschberg J, et al (2010) An orange ripening mutant links plastid NAD(P)H dehydrogenase complex activity to central and specialized metabolism during tomato fruit maturation. Plant Cell 22:1977-1997. doi:10.1105/tpc.110.074716  

31. Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437-439. doi:10.1126/science.1925603  

32. Page D, Gouble B, Valot B, Bouchet JP, Callot C, Kretzschmar A, Causse M, Renard CM, Faurobert M (2010) Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 232:483-500. doi: 10.1007/s00425-010-1184-z  

33. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 314014-4016. doi. org/10.1093/bioinformatics/btv537  

34. Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene forming enzyme transgene. Plant J 3:469-481.  

35. Rhodes MJ (1980) The physiological basis for the conservation of food crops. Prog Food Nutr Sci 4:11-20  

36. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84-99. doi:10.1104/pp.103.023572  

37. Saravanan RS, Rose JK (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522-2532. doi:10.1002/pmic.200300789  

38. Seymour GB, Taylor JE, Tucker GA (eds) (1993) Biochemistry of fruit ripening. Chapman and Hall, London, UK, p 454. doi:10.1007/978- 94-011-1584-1  

39. Tigchelaar EC, McGlasson WB, Buescher RW (1978) Genetic regulation of tomato fruit ripening. Hortic Sci 13:508-513.  

40. Trebitsh T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci (USA) 90:9441-5. doi:10.1073/pnas.90.20.9441  

41. Tucker GA, Schindler CB, Roberts JA (1984) Flower abscission in mutant tomato plants. Planta 160:64-167. doi:10.1007/BF00392865  

42. Vrebalov J, Ruezinsky D, van Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science 296:343-346. doi:10.1126/science.1068181  

43. Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60-76  

44. Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latché A, Pech JC, Fernie AR, et al (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21: 1428-1452. doi:10.1105/tpc.108.060830  

45. Wang W, Cai J, Wang P, Tian S, Qin G (2017) Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biol 18:47. doi:10.1186/s13059-017-1178-2  

46. Wilkinson J, Lanahan M, Yen H, Giovannoni J, Klee H (1995) An ethylene‐inducible component of signal transduction encoded by Never‐ripe. Science 270:1807-1809. doi:10.1126/science.270.5243.1807  

47. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155-189. doi:10.1146/ annurev.pp.35.060184.001103  

48. Yen H-C, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ (1995) The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol 107:1343-1353. doi:10.1104/pp.107.4.1343