Article | . 2018 Vol. 36, Issue. 3
Yearly Variation in Glucosinolate Content in Inflorescences of Broccoli Breeding Lines



Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University1
Breeding Research Institute, Koregon Co., Ltd, 2
Institute of Agricultural Science & Technology, Chonbuk National University3




2018.. 406:416


PDF XML




This study aimed to evaluate yearly variation in individual glucosinolate (GSL) profiles and content in inflorescences of 42 broccoli genotypes (9 commercial cultivars, 16 F1 hybrids, and 17 inbred lines) grown at the same location for two consecutive years (2014 and 2015). Broccoli heads were harvested at the marketable stage, and individual GSLs were analyzed using high performance liquid chromatography (HPLC). Eight GSLs, namely glucoiberin (IBE), progoitrin (PRO), epiprogoitrin (EPI), glucoraphanin (GRA), sinigrin (SIN), gluconapin (NAP), glucoerucin (ERU), and glucobrassicin (BRA) were identified in broccoli breeding lines grown in both 2014 and 2015. BRA was the most dominant GSL, followed by GRA and ERU, in both 2014 and 2015. The GSL content and profiles were dependent on both the genotype and the growing year. In total, five F1 hybrids (A311, 5022, 5036, 5075, and 5078) and three inbred lines (5401, 5402, and 5409) showed similar levels of BRA in both years. In addition, the levels of GRA in genotypes 5078, 5079, 5075, and 5308, and levels of IBE in 5078, 5079, and 5312 were stable between 2014 and 2015. Total GSL content varied from 3.32-16.92 μmol·g-1 in 2014 and 3.83-14.20 μmol·g-1 in 2014. The average total GSL content was higher in 2015 (8.18 μmol·g-1 DW) than in 2014 (7.66 μmol·g-1 DW). This trend was positively correlated to climatic factors such as relative humidity, temperature, and radiation, which were also higher in 2015 than in 2014. The genotypes 5035, 5402, and 5409 had the highest total GSL content among all genotypes in both years. Altogether, two F1 hybrids (5078 and 5079) and two inbred lines (5308 and 5409) showed stable and high GSL contents under two different climatic conditions. Therefore, these genotypes could be used for breeding functional materials for commercialization in the future.



1. Baik HY, Juvik JA, Jeffery EH, Wallig MA, Kushad M, Klein BP (2003) Relating glucosinolate content and flavor of broccoli cultivars. J Food Sci 68:1043-1050. doi:10.1111/j.1365-2621.2003.tb08285.x  

2. Bhandari SR, Kwak JH (2014) Seasonal variation in phytochemicals and antioxidant activities in different tissues of various broccoli cultivars. Afr J Biotechnol 13:604-615. doi:10.5897/AJB2013.13432  

3. Bhandari SR, Kwak JH (2015) Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228-1243. doi:10.3390/molecules20011228  

4. Bhandari SR, Jo JS, Lee JG (2015) Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. doi:10.3390/molecules200915827  

5. Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120-6130  

6. Bjorkman M, Klingen I, Birch AN, Bones AM, Bruce TJ, Johansen TJ, Meadow R, Molmann J, Seljasen R, et al (2011) Phytochemicals of Brassicaceae in plant protection and human health - influences of climate, environment and agronomic practice. Phytochemistry 72:538-556. doi.org/10.1016/j.phytochem.2011.01.014  

7. Cartea ME, Velasco P, Obregon S, Padilla G, de Haro A (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410. doi.org/10.1016/j.phytochem.2007.08.014  

8. Charron CS, Sams CE (2004) Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J Am Soc Hortic Sci 129:321-330  

9. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862-2867. doi:10.1021/jf981373a  

10. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310-325. doi:10.1039/B9AY00280D  

11. Cheigh, HS, Park KY (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34:175-203. doi:10.1080/104083994 09527656  

12. Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72:1424-1435  

13. Fabek S, Toth N, Redovnikovic IR, Custic MH, Benko B, Zutic I (2012) The effects of nitrogen fertilization on nitrate accumulation, and the content of minerals and glucosinolates in broccoli cultivars. Food Technol Biotechnol 50:183-191  

14. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. doi:10.1016/S0031-9422(00)00316-2  

15. Fenwick GR, Griffiths NM, Heaney RK (1983) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of 126 glucosinolates and their breakdown products. J Sci Food Agric 34:73-80. doi:10.1002/jsfa.2740340111  

16. Fernandez-Leon MF, Fernandez-Leon AM, Lozano M, Ayuso MC, Gonzalez-Gomez D (2013) Different postharvest strategies to preserve broccoli quality during storage and shelf life: controlled atmosphere and 1-MCP. Food Chem 138:564-573. doi:10.1016/j.foodchem. 2012.09.143  

17. Getahan SM, Chung FL (1999) Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol Biomarkers Prev 8:447-451   

18. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303-338. doi:10.1146/annurev. arplant.57.032905.105228  

19. Ippoushi K, Takeuch A, Ito H, Hori H, Azuma K (2007) Antioxidative effects of daikon sprout (Raphanus sativus L.) and ginger (Zingiber officinale Roscoe) in rats. Food Chem 102:237-242. doi:10.1016/j.foodchem.2006.04.046  

20. Jang MW, Ha BJ (2012) Effects of broccoli on anti-inflammation and anti-oxidation according to extraction solvents. J Food Hyg Saf 27:461-465. doi:10.13103/JFHS.2012.27.4.461  

21. Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA (2003) Variation in content of bioactive components in broccoli. J Food Compos Anal 16:323-330. doi:10.1016/S0889-1575(03)00045-0  

22. Joseph MA, Moysich KB, Freudenheim JL, Shields PG, Bowman ED, Zhang Y, Marshall JR, Ambrosone CB (2004) Cruciferous vegetables, genetic polymorphisms in glutathione s-transferases m1 and t1, and prostate cancer risk. Nutr Cancer 50:206-213. doi:10.1207/ s15327914nc5002_11   

23. Jo JS, Bhandari SR, Kang GH, Lee JG (2016) Comparative analysis of individual glucosinolates, phytochemicals, and antioxidant activities in broccoli breeding lines. Hortic Environ Biotechnol 57:392-403. doi:10.1007/s13580-016-0088-7  

24. KMA (Korea Meteorological Administration) (2014, 2015) https://data.kma.go.kr/data/grnd/ selectAsosRltmList.do?pgmNo=36  

25. Kim SM, Cho YS, Sung SK (2001) The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33:626-632  

26. Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RCH, Beekwilder J (2013) Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J Agric Food Chem 61:3984-3993. doi:10.1021/ jf400890p  

27. Lee JG, Kwak JH, Um YC, Lee SG, Jang YA, Choi CS (2012) Variation of glucosinolate contents among domestic broccoli (Brassica oleracea L. var. Italica) accessions. Korean J Hortic Sci Technol 30:743-750. doi:10.7235/hort.2012.12124  

28. Lee JJ, Shin HD, Lee YM, Kim AR, Lee MY (2009) Effect of broccoli sprouts on cholesterol-lowering and anti-obesity effects in rats fed high fat diet. J Korean Soc Food Sci Nutr 38:309-318. doi:10.3746/jkfn.2009.38.3.309  

29. Lopez-Cervantes J, Tirado-Noriega LG, Sanchez-Machado DI, Campas-Baypoli ON, Cantu-Soto EU, Nunez-Gastelum JA (2013) Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int J Food Sci Technol 48:2267-2275. doi:10.1111/ijfs.12213  

30. Meyer M, Adam ST (2008) Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. Eur Food Res Technol 226:1429-1437. doi:10.1007/s00217-007-0674-0  

31. Mithen RF (2013) Development and commercialization of ‘Beneforte’ Broccoli and potential health benefits. Acta Hortic 1005:67-70. doi:10.17660/ActaHortic.2013.1005.4  

32. Nakamura Y, Iwahashi T, Tanaka A, Koutani J, Matuso T, Okamoto S (2001) 4-(methylthio)-3-buenyl isothiocyanate, a principal antimutagen in daikon (Raphanus sativus L.: Japanese white radish). J Agric Food Chem 49:5755-5760. doi:10.1021/jf0108415  

33. Nachshon-Kedmi M, Fares FA, Yannai S (2004) Therapeutic activity of 3,3’-diindolylmethane on prostate cancer in an in vivo model. Prostate 61:153-160. doi:10.1002/pros.20092  

34. Pek Z, Daood H, Nagyne MG, Berki M, Tothne MM, Nemenyi A, Helyes L (2012) Yield and phytochemical compounds of broccoli as affected by temperature, irrigation, and foliar sulfur supplementation. HortScience 47:1646-1652  

35. Perez-Balibrea S, Moreno DA, Garcia-Viguera C (2011) Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem 125:348-354. doi:10.1016/j.foodchem.2010.09.004  

36. Rosa EAS, Heaney RK, Portas CAM, Fenwick GR (1996) Changes in glucosinolate concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons. J Sci Food Agric 71:237-244. doi:10.1002/(SICI)1097-0010(199606)71:2<237::AID-JSFA574>3.0. CO;2-P  

37. Rosa E, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. HortScience 36:56-59  

38. Sarwar M, Kirkegaard JA (1998) Biofumigation potential of brassicas. II: Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201:91-101. doi:10.1023/A:1004364713152  

39. Sok DE, Kim JH, Kim MR (2003) Isolation and identification of bioactive organosulfur phytochemicals from solvent extract of broccoli. J Korean Soc Food Sci Nutr 32:315-319. doi:10.3746/jkfn.2003.32.3.315  

40. Spitz MR, Duphorne CM, Detry MA, Pillow PC, Amos CI, Lei L, de Andrade M, Gu XJ, Hong WK, et al (2000) Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Biomarkers Prev 9:1017-1020  

41. Sarikamis, G, Marquez J, MacCormack R, Bennett RN, Roberts J, Mithen R (2006) High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breed 18:219-228. doi:10.1007/s11032-006-9029-y  

42. Schonhof, I, Kläring HP, Krumbein A, Claußen W, Schreiner M (2007a) Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric Ecosyst Environ 119:103-111. doi:10.1016/j.agee.2006. 06.018  

43. Schonhof I, Kläring HP, Krumbein A, Schreiner M (2007b) Interaction between atmospheric CO and glucosinolates in broccoli. J Chem Ecol 33:105-114. doi:10.1007/s10886-006-9202-0  

44. Steindal ALH, Mølmann J, Bengtsson GB (2013) Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). J Agric Food Chem 61:10779-10786. doi:10.1021/jf403466r  

45. Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2003) Effect of climatic and sulphur fertilization conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. Eur Food Res Technol 216:395-401. doi:10.1007/s00217-003-0664-9  

46. Wang J, Gu H, Yu H, Zhao Z, Sheng X, Zhang X (2012) Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 133:735-741. doi:10.1016/j.foodchem.2012.01.085