Article | . 2018 Vol. 36, Issue. 3
Karyotypes of Three Exotic Cucurbit Species Based on Triple-Color FISH Analysis

Department of Life Sciences, Chromosome Research Institute, Sahmyook University1

2018.. 417:425


Cytogenetic investigations based on chromosome composition provide insight into basic genetic and genomic characteristics of a species that in turn facilitate species identification and breeding programs. Tandem repeats (TRs) like the 45S rDNA, 5S rDNA and telomeric repeats are ubiquitous in nuclear genomes and are good cytogenetic markers for karyotyping. In this study, we analyzed the karyotypes of three exotic cucurbit species, namely Cucumis melo var. flexuosus (L.) Naudin (2n=24), Melothria pendula L. (2n =24) and Trichosanthes anguina L. (2n=22), based on the cytogenetic distribution of the 45S, 5S and Arabidopsis-type telomeric TRs through triple-color fluorescence in situ hybridization. T. anguina had larger chromosomes (3.2-5.4 µm) compared to C. melo var. flexuosus and M. pendula (1.5-2.2 µm and 1.8-2.5 µm). One and two pairs of 5S and 45S rDNA signals were observed in C. melo var. flexuosus, respectively; while M. pendula and T. anguina had four and three pairs of 45S rDNA, respectively, and two pairs of 5S rDNA. Co-localized signals of 5S and 45S rDNA were observed in M. pendula and T. anguina, but not in C. melo var. flexuosus. Telomeric repeats were observed at chromosome ends of all chromosomes. This information will be useful in future cytogenomic and phylogenetic studies facilitating cucurbit breeding programs.

1. Abd El-Twab MH, Kondo K (2006) FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature. Chromosom Bot 1:1-5. doi:10.3199/iscb.1.1  

2. Albert PS, Gao Z, Danilova TV, Birchler JA (2010) Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genom Res 129:6-16. doi:10.1159/000314342  

3. Antão CM, Malcata FX (2005) Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem 43:637- 650. doi:10.1016/j.plaphy.2005.05.001  

4. Beevy SS, Kuriachan P (1996) Chromosome numbers of south Indian Cucurbitaceae and a note on the cytological evolution in the family. J Cytol Genet 31:65-71  

5. Belandres HR, Waminal NE, Hwang YJ, Park BS, Lee SS, Huh JH, Kim HH (2015) FISH karyotype and GISH meiotic pairing analyses of a stable intergeneric hybrid×Brassica oraphanus line BB# 5. Korean J Hortic Sci Technol 33:83-92. doi:10.7235/hort.2015.14151  

6. Benavente E, Cifuentes M, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genom Res 120:384-395. doi:10.1159/000121087  

7. Blackburn EH (1991) Structure and function of telomeres. Nature 350:569-573  

8. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099-1111  

9. Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, et al (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241-1251. doi:10.1101/gr.5338906  

10. Bullock SH (1990) Abundance and allometrics of vines and self-supporting plants in a tropical deciduous forest. Biotropica 22:106-109. doi:10.2307/2388726  

11. Coluccia E, Pichiri G, Nieddu M, Coni P, Manconi S, Deiana A, Salvadori S, Mezzanotte R (2011) Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae). Eur J Histochem 55:12. doi:10.4081/ejh.2011.e12  

12. Cuyacot AR, Won SY, Park SK, Sohn SH, Lee J, Kim JS, Kim HH, Lim K-B, Hwang Y-J (2016) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hortic 198:438-444. doi:10.1016/ j.scienta.2015.12.025  

13. Cuyacot AR, Lim KB, Kim HH, Hwang YJ (2017) Chromosomal characterization based on repetitive DNA distribution in a tetraploid cytotype of Chrysanthemum zawadskii. Hortic Environ Biotechnol 58:488-494. doi:10.1007/s13580-017-0280-4  

14. Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosom Res 14:845-857. doi:10.1007/s10577-006-1092-z  

15. Delannay IY, Staub JE, Chen JF (2010) Backcross introgression of the Cucumis hystrix genome increases genetic diversity in US processing cucumber. J Am Soc Hortic Sci 135:351-361  

16. Devi J, Ko J, Seo B (2005) FISH and GISH: Modern cytogenetic techniques. Indian J Biotechnol 4:307-315  

17. Dodsworth S, Chase MW, Leitch AR (2016) Is post polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180:1-5. doi:10.1111/boj.12357  

18. Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35: 73-78. doi:10.1016/j.gde.2015.10.006  

19. Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196: 227-241. doi:10.1007/BF00982962  

20. Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389-394. doi:10.1007/s00412-012-0368-7  

21. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theoret Appl Genetics 103:486-490. doi:10.1007/s001220100653  

22. Heslop-Harrison J (1991) The molecular cytogenetics of plants. J Cell Sci 100:5-21  

23. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, et al (2009) The genome of the cucumber, Cucumis sativus L. Nature Genet 41:1275-1281. doi:10.1038/ng.475  

24. Icso D, Molnar-Lang M, Linc G (2014) Constructing an alternative wheat karyotype using barley genomic DNA. J Appl Genet. doi:10.1007/s13353-014-0230-0:45-48  

25. Jeffrey C (1967) On the classification of Cucurbitaceae. Kew Bull 20:417-426. doi:10.2307/4108235  

26. Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233-247. doi:10.1111/j.1095-8339.1980.tb01676.x  

27. Jeffrey CS (2005) A new system of Cucurbitaceae. Bot Zhurn 90:332-335  

28. Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148-154. doi:10.1016/j.pbi.2005.01.014  

29. Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13:413-418  

30. Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosom Res 18:325-336. doi:10.1007/s10577-010-9116-0  

31. Książczyk T, Taciak M, Zwierzykowski Z (2010) Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 51:449-460. doi:10.1007/BF03208874  

32. Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72:5311-5317. doi:10.1128/AEM.03039-05  

33. Lee HS, Huang PL, Kung HF, Li BQ, Huang PL, Huang P, Huang HI, Chen HC (1991) TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc Natl Acad Sci USA 88:6570-6574. doi:10.1073/pnas.88.15.6570  

34. Lee JM (1994) Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29:235-239  

35. Lee Tb (2003) Coloured flora of Korea. Vol. I, II. Hyangmunsa, Seoul, Korea, pp 774-780  

36. Leitch I, Heslop-Harrison J (1992) Physical mapping of the 18S-5.8 S-26S rRNA genes in barley by in situ hybridization. Genome 35: 1013-1018. doi:10.1139/g92-155  

37. Li KP, Wu YX, Zhao H, Wang Y, Lü XM, Wang JM, Xu Y, Li ZY, Han YH (2016) Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol Biol 16:1. doi:10.1186/s12862-016-0656-6  

38. Liao PC, Tsai CC, Chou CH, Chiang YC (2012) Introgression between cultivars and wild populations of Momordica charantia L. (Cucurbitaceae) in Taiwan. Int J Mol Sci 13:6469-6491. doi:10.3390/ijms13056469  

39. Lira R, Caballero J (2002) Ethnobotany of the wild Mexican Cucurbitaceae1. Econ Bot 56:380-398. doi:10.1663/0013-0001(2002)056 [0380:EOTWMC]2.0.CO;2  

40. Martins C, Galetti Jr PM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosom Res 7:363-367. doi:10.1023/A:1009216030316  

41. Martins C, Galetti Jr PM (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903-910. doi:10.1139/g01-069  

42. Matoba H, Mizutani T, Nagano K, Hoshi Y, Uchiyama H (2007) Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas 144:235-243. doi:10.1111/j.2007. 0018-0661.02012x  

43. Mayer RA, Sergios PA, Coonan K, O'Brien L (1992) Trichosanthin treatment of HIV-induced immune dysregulation. Eur J Clin Invest 22: 113-122. doi:10.1111/j.1365-2362.1992.tb01944.x  

44. McGrath MS, Hwang KM, Caldwell SE, Gaston I, Luk KC, Wu P, Ng VL, Crowe S, Daniels J, et al (1989) GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci USA 86:2844-2848  

45. Mishima M, Ohmido N, Fukui K, Yahara T (2002) Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110:550-558. doi:10.1007/s00412-001-0175-z  

46. Ojiako O, Igwe C (2008) The nutritive, anti-nutritive and hepatotoxic properties of Trichosanthes anguina (snake tomato) fruits from Nigeria. Pak J Nutr 7:85-89  

47. Qian C-L, Qi X-H, Yang J-H, Zhang M-F (2012) Molecular phylogeny of Chinese snakegourd (Trichosanthes kirilowii Maxim) based on cytological and AFLP analyses. Caryologia 65:216-222. doi:10.1080/00087114.2012.735898  

48. Rai M, Pandey S, Kumar S, Pitrat M (2008) Cucurbit research in India: a retrospect. IIVR. 285-294  

49. Reddy UK, Aryal N, Islam-Faridi N, Tomason YR, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol 60:2091-2100. doi:10.1007/s10722-013- 9976-1  

50. Renner SS, Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol 7:58. doi:10.1186/1471-2148-7-58  

51. Sain RS, Joshi P, Divakara Sastry EV (2002) Cytogenetic analysis of interspecific hybrids in genus Citrullus (Cucurbitaceae). Euphytica 128: 205-210. doi:10.1023/A:1020800113252  

52. Schaefer H, Renner S (2010) Cucurbitaceae. In flowering plants eudicots. Springer, Berlin,Germany, pp 112-174. doi:10.1007/978-3- 642-14397-7_10   

53. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nat Methods 9:671-675  

54. Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489-495. doi:10.1046/j.1365-313X.1998.00125.x  

55. Shengping Z, Xingfang G, Ye W (2006) Effect of bur cucumber (Sicyos angulatus L.) as rootstock on growth physiology and stress resistance of cucumber plants. Acta Hortic Sin 33:1231-1236  

56. Sybenga J (2012) Cytogenetics in plant breeding. Springer Sci. Bus. Media. Dreijenlaan, Vol 7. HA Wageningen, Netherlands. pp 1-10. doi:10.1007/978-3-642-84083-8  

57. Tzonev R (2005) Sicyos angulatus (Cucurbitaceae): a new adventive species for the flora of Bulgaria. Phytol Balcan 11:67-68  

58. Uchikoba T, Hosoyamada S, Onjyo M, Arima K, Yonezawa H, Kaneda M (2001) A serine endopeptidase from the fruits of Melothria japonica (Thunb.) Maxim. Phytochemistry 57:1-5. doi:10.1016/S0031-9422(00)00511-2  

59. Vrana J, Simkova H, Kubalakova M, Cihalikova J, Dolezel J (2012) Flow cytometric chromosome sorting in plants: the next generation. Methods 57:331-337. doi:10.1016/j.ymeth.2012.03.006  

60. Waminal NE, Kim HH (2012) Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic Environ Biotechnol 53:49-56. doi:10.1007/s13580-012-0105-4  

61. Waminal NE, Kim HH (2015) FISH karyotype analysis of four wild Cucurbitaceae species using 5S and 45S rDNA probes and the emergence of new polyploids in Trichosanthes kirilowii Maxim. Korean J Hortic Sci Technol 33:869-876. doi:10.7235/hort.2015. 15101  

62. Waminal NE, Kim NS, Kim HH (2011) Dual-color FISH karyotype analyses using rDNAs in three Cucurbitaceae species. Genes Genomics 33:521-528. doi:10.1007/s13258-011-0046-9  

63. Weng Y, Sun Z (2012) Major cucurbit crops. In YH Wang, TK Behera, C Kole (ed.) Genetics, Genomics and Breeding of Cucurbits. Science Publishers, New Hampshire, USA, pp 1-16  

64. Whitaker TW (1933) Cytological and phylogenetic studies in the Cucurbitaceae. Bot Gaz 780-790. doi:10.1086/334347  

65. Zhuang FY, Chen JF, Staub JE, Qian CT (2006) Taxonomic relationships of a rare Cucumis species (C. hystrix Chakr.) and its interspecific hybrid with cucumber. HortScience 41:571-574