Article | . 2018 Vol. 36, Issue. 4
Factors That Affect Seed Germination and Changes in Endogenous Gibberellins and Abscisic acid Concentrations in Mukdenia rossii (Oliv.) Koidz



Quality Control & Seed Tech Team, Quality Assurance Department, Nongwoo Bio Co., Ltd.1
Department of Horticulture and Breeding, Andong National University2
School of Applied Biosciences, Kyungpook National University3
Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University4




2018.. 459:469


PDF XML




The present study was conducted to establish storage conditions that accelerate germination and maintain the germination rate of Mukdenia rossii (Oliv.) Koidz. seeds. Fresh seeds of M. rossii exhibited an excellent germination rate of over 95.5%, and cotyledon development was confirmed by the presence of a sufficiently developed embryo. Therefore, the seeds of M. rossii were classified as nondormant type. Seeds with weak germination potential due to long-term storage were used for the experiment to determine the temperature and light condition and improve germination rate. To evaluate how changes in storage conditions affect the relationship between germination characteristics and hormone content, fresh seeds were stored at different temperatures for 2, 4, and 6 months and germinated at 20°C in the presence of light. Treatment with 100 mg·L-1 gibberellic acid (GA) improved the germination rate of M. rossii seeds by 94.8% whose germination rate had decreased due to long-term storage. Seeds stored at different temperatures and for different periods of time exhibited high germination rates between 88.8%-99.5% under all storage conditions; however, storage period had negative effects on mean germination time, germination energy, and time taken for the germination rate to reach 50% that were statistically significant (p < 0.001). Endogenous GA content in seeds that had been stored for 6 months at 25°C changed marginally, therefore, it can be predicted that the relative proportion of ABA in the seed is increased. On the other hand, the relative concentration of abscisic acid (ABA) increased significantly. In contrast, the M. rossii seeds stored at -20°C had a decrease in activated GA (GA4) levels and increased levels of precursor GAs, such as GA24 and GA9. Furthermore, endogenous ABA content decreased significantly, which increased the relative GA concentration in seeds. Therefore, -20°C is an effective storage temperature for the propagation of M. rossii seeds.



1. Abe S, Okada M, Kunishi K, Higuchi K (1991) Dictionary of floriculture. Asakula Shoten, Japan  

2. Akers SW, Holley KE (1986) SPS: A system for priming seeds using aerated polyethylene glycol or salt solution. HortScience 21:529-531  

3. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1-16. doi:10.1079/SSR2003150  

4. Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination. Vol ll. Viability, dormancy and environmental control. Springer-Verlag, Berlin, Germany. doi:10.1007/978-3-642-68643-6  

5. Bradford KJ, May DM, Hoyle BJ, Skibinski ZS, Scott ST, Tyler KB (1988) Seed and soil treatment to improve emergence of muskmelon from cold or crusted soils. Crop Sci 28:1001-1005. doi:10.2135/cropsci1988.0011183X002800060028x  

6. Chanagnat A, Jeudy B (1981) Study of germination in the laboratory of seeds of Primula obconica. Seed Sci Technol 9:577-586  

7. Chang YD, Lee CH (2007) Effect of storage duration, temperature and priming treatment on seed germination of Polygonatum odoratum var. pluriflorum. Korean J Plant Res 20:481-489  

8. Cho JS, Jeong JH, Lee CH (2016) The Effects of environmental conditions and chemical treatments on seed germination in Astilboides tabularis (Hemsl.) Engl. Korean J Hortic Sci Technol 34:363-371  

9. Cho JS, Lee CH (2018) Effect of germination and water absorption on scarification and stratification of kousa dogwood seed. Hortic Environ Biotechnol 59:335-344. doi:10.1007/s13580-018-0034-y  

10. Coolbear P, Francis A, Grierson D (1984) The effect of low temperature presowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J Exp Bot 35:1609-1617. doi:10.1093/jxb/35.11.1609  

11. Eum SJ, Park KI, Lee IJ, Choi YJ, Oh W, Kim KW (2011) Effects of foliar-sprayed diniconazole on contents of endogenous gibberellic acids and abscisic acid in Lilium davuricum. Korean J Hortic Sci Technol 29:165-171  

12. Finkelstein R, Reeves W, Ariizumi W, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387-415. doi:10.1146/annurev.arplant.59.032607.092740  

13. Food Materials Information (2017) http://fse.foodnara.go.kr/origin/search_data_list.jsp  

14. Fukai S, Oe M (1990) The characteristics of Primula japonica L. native to Osaka prefecture (Japan). Bull Osaka-fu Agric For Res Center 26:45-50  

15. Geneve RL (2003) Impact of temperature on seed dormancy. HortScience 38:336-341  

16. Han KU (2006) Effects of light, temperature, and priming on the seed germination of Begonia partita. MS Diss, Korea Univ., Seoul, Korea  

17. Hartmann HT, Kester DE, Davies Jr FT, Geneve RL (1997) Plant propagation: Principles and practices, 6th Ed. Prentice Hall, Upper Saddle River, NJ, USA  

18. Huh EJ, Lee SK, Chung BN, Lee IJ, Choi SY (2006) Changes of growth and gibberellin contents in Chrysanthemum by infection of Chrysanthemum stunt viroid. Hortic Environ Biotechnol 47:366-370  

19. Hwang IS, Yoo JH, Seong ES, Lee JG, Kim HY, Kim NJ, Lee JD, Ham JK, Ahn YS (2012) The effect of temperature and seed soaking on germination in Cynanchum wilfordii (Maxim.) Hemsl. Korean J Med Crop Sci 20:136-139. doi:10.7783/KJMCS.2012.20.2.136  

20. Khan AA (1992) Preplant physiological seed conditioning. Hortic Rev 13:131-181. doi:10.1002/9780470650509.ch4  

21. Khan AA, Tolbert NE (1969) Cytokinin-inhibitor antagonism in the hormonal control of α-amylase synthesis and growth in barley seed. Physiol Plant 22:94-103. doi:10.1111/j.1399-3054.1969.tb07845.x  

22. Kim GT, Um TW (1995) Effects of gibberellic acid treatment on germination: a study for the utilization of wild herbaceous species. Korean J Environ Ecol 9:56-61  

23. Kim SK, Kim DW, Whang CJ, Nam SS (1996) Studies on dormancy breaking, sowing time and inhibition of germination during storage of seed in Wasabia japonica. Korean J Med Crop Sci 4:64-67  

24. Kim YG, Yu HS, Park HW, Seong NS, Son SY (2001) Effects of environment and storage condition on germination of Astragalus membranaceus Korean J Med Crop Sci 9:265-268  

25. Lang GA (1987) Dormancy: A new universal terminology. HortScience 22:817-820  

26. Lee IJ, Foster K, Morgan PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011. doi:10.1104/pp.116.3.1003  

27. Lee SG, Kim HY, Ku JJ (2014) Effects of seed storage temperature and pre-treatment on germination, seedling quality on wild Trichosanthes kirilowii Maxim and Trichosanthes kirilowii var. japonica Kitam. Korean J Med Crop Sci 22:53-59. doi:10.7783/ KJMCS.2014.22.1.53  

28. Lee SM, Radhakrishnan R, Kang SM, Kim JH, Lee IY, Moon BK, Yoon BW, Lee IJ (2015) Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol Environ Safety 122:230-237. doi:10.1016/j.ecoenv.2015.07.015  

29. Lee TB (2003) Coloured flora of Korea. Hyangmoonsa Publishing Co., Seoul, Korea  

30. Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253-270. doi:10.1007/s00299-011-1180-1  

31. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55-67. doi:10.1017/S0960258510000012  

32. Nikolaeva MG (2001) Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century). Botanicheskii Zhurnal 86:1-14  

33. Norton LR (1988) Change in survival of Pisum sativum seed under water by free gaseous nitrogen, oxygen and carbon dioxide and by urea peroxide addition to soak water. Seed Sci Technol 16:167-173  

34. Oh HS, Kim HH, Moon SJ, Kwon SJ, Lee CH (2003) Effect of temperature and priming treatment on seed germination of Hosta plantaginea. J Kor Soc Hortic Sci 44:267-270  

35. Oh W, Kim J, Kim YH, Lee IJ, Kim KS (2015) Shoot elongation and gibberellin contents in Cyclamen persicum are influenced by temperature and light intensity. Hortic Environ Biotechnol 56:762-768. doi:10.1007/s13580-015-1124-8  

36. Qi Q, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression, and very long chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol 117:979–987. doi:10.1104/pp.117.3.979  

37. Sponsel VM (1995) The biosynthesis and metabolism of gibberellins in higher plants. In PJ Davies, ed, Plant Hormones, Springer, Dordretch, Netherlands, pp 66-97. doi:10.1007/978-94-011-0473-9_4  

38. Tagaki H (2001a) Breaking of two types of dormancy in seeds of edible Polygonatum macranthum. J Jpn Soc Hortic Sci 70:424-430. doi:10.2503/jjshs.70.424  

39. Tagaki H (2001b) Breaking of two types of dormancy in seeds of Polygonatum odoratum used as vegetables. J Jpn Soc Hortic Sci 70:416-423. doi:10.2503/jjshs.70.416  

40. Talon M, Koornneef M, Zeenaart JA (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Planta 87:7983-7987. doi:10.1073/pnas.87.20.7983  

41. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225-251. doi:10.1146/annurev.arplant.59. 032607.092804  

42. Yoo DL, Cho KS, Ryu SY, Ryu IC (1999) Effect of low temperature and gibberellin treatment for promoting seed germination on Hanabusaya asiatica. Korean J Hortic Sci Technol 17:674 (Abstract)