Article | . 2018 Vol. 36, Issue. 4
Effects of Biochar Mixes with Peat-moss Based Substrates on Growth and Development of Horticultural Crops



College of Landscape Architecture, Fujian Agriculture and Forestry University1
Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, College Station2
Johnsonville Sausage LLC3
Department of Agricultural & Biological Engineering4
Department of Horticulture, Catholic University of Daegu5




2018.. 501:512


PDF XML




This study investigated the potential of using biochar as a container substrate component to replace peat moss to produce horticultural crops. Biochar was incorporated into commercially available peat moss-based substrate (PM) at 0%, 20%, 40%, 60%, 80% and 100% (vol.) to grow chrysanthemum (Dendranthema grandiflorum), tomato (Solanum lycopersicum), lettuce (Lactuca sativa) and basil (Ocimum basilicum) in containers. Responses of plant growth to the percentage of biochar in substrate mixes was different for the crops. Chrysanthemum grown in PM mixes with 60%, 80% and 100% biochar had significantly higher shoot fresh weight (FW) than in PM alone (0% biochar), while tomato plants in PM mixes with 80% and 100% biochar had lower shoot FW, dry weight (DW), and root rating values. For lettuce, only plants grown in 100% biochar of the second crop (sowed after 52 days of the first crop) had lower FW than those grown in PM mixes without biochar. For basil, the lower root rating was observed in plants grown in PM mixes with 80% biochar, while the highest was observed in plants grown in PM mixes with 20% biochar. Basil grown in PM mixes with 20% biochar had higher dry and fresh weights than those in PM mixes with no biochar. No negative effect on plant growth was observed in mixes with biochar as high as 60%, which was probably due to the similarity between physical properties of biochar and PM tested in this experiment.



1. Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3:1-10  

2. Altland JE, Locke JC (2012) Biochar affects macronutrient leaching from a soilless substrate. HortScience 47:1136-1140   

3. Cavins TJ, Whipker BE, Fonteno WC, Harden B, McCall I, Gibson JL (2000) Monitoring and Managing pH and EC Using the PourThru Extraction Method. North Carolina State Univ. Hort. Info. Lflt. #590. NC State University Cooperative Extension, Raleigh, USA, pp 1-17  

4. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle. Intro J Environ Qual 39:1218-1223. doi:10.2134/jeq2010.0204  

5. Dumroese RK, Heiskanen J, Englund K, Tervahauta A (2011) Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 35:2018-2027. doi:10.1016/j.biombioe.2011.01.053  

6. Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913-921. doi:10.1094/PHYTO-100-9-0913  

7. Evans MR (2004) Processed poultry feather fiber as an alternative to peat in greenhouse crops substrates. HortTechnology 14:176-179  

8. Evans MR, Gachukia MM (2007) Physical properties of sphagnum peat-based root substrates amended with perlite or parboiled fresh rice hulls. HortTechnology 17:312-315  

9. Fascella G (2015) Growing substrates alternative to peat for ornamental plants. In: MD Asaduzzaman, ed, Soilless Culture-Use of Substrates for the Production of Quality Horticultural Crops. InTech Open Access Publisher, Rijeka, Croatia, pp 47-67. doi:10.5772/59596  

10. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review. Biol Fertil Soils 35:219-230. doi:10.1007/s00374-002-0466-4  

11. Graber ER, Harel YM, Kolton M, Cytryn E, Silber A (2010) Biochar impact on development and producitivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481-496. doi:10.1007/s11104-010-0544-6  

12. Gu M, Li Q, Steele PH, Niu G, Yu F (2013) Growth of ‘Fireworks’ gomphrena grown in substrates amended with biochar. J Food Agric Environ 11:819-821  

13. Jayasinghe GY, Tokashiki Y, Arachchi ID, Arakaki M (2010) Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production. J Hazard Mater 174:700-706. doi:10.1016/j.jhazmat.2009.09.107  

14. Kadota M, Niimi Y (2004) Effects of charcoal with pyroligneous acid and barnyard manure on bedding plants. Sci Hortic 101:327-332. doi:10.1016/j.scienta.2004.01.002  

15. Landis TD, Tinus RW, McDonald SE, Barnett JP (1990) Containers and growing media. In: The Container Tree Nursery Manual, vol. 2. USDA Forest Service, Washington, DC, USA, pp 1-674  

16. Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343-357. doi:10.1023/A: 1022833116184  

17. Liang B, Lehmann J, Kinyangi D, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Peterson J, et al (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719-1730. doi:10.2136/sssaj2005.0383  

18. Michel JC (2010) The physical properties of peat: a key factor for modern growing media. Mires Peat 6:1-6  

19. Noguera P, Abad M, Puchades R, Maquieira A, Noguera V (2003) Influence of particle size on physical and chemical properties of coconut coir dust as a container medium. Commun Soil Sci Plant Anal 34:593-605. doi:10.1081/CSS-120017842  

20. Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105-112. doi:10.1097/SS.0b013e3181981d9a  

21. Olszewski MW, Eisenman SW (2017) Influence of biochar amendment on herb growth in a green roof substrate. Hortic Environ Biotechnol 58: 406-413. doi:10.1007/s13580-017-0180-7  

22. Rivière LM, Caron J (2001) Research on substrates: state of the art and need for the coming 10 years. Acta Hortic 548:29-42. doi:10.17660/ActaHortic.2001.548.1  

23. Robertson RA (1993) Peat, horticulture and environment. Biodivers Conserv 2:541-547. doi:10.1007/BF00056747  

24. Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699-708. doi:10.1007/s00374-006-0152-z  

25. Steiner C, Harttung T (2014) Biochar as growing media additive and peat substitute. Solid Earth 5:995-999. doi:10.5194/se-5-995-2014  

26. Tian Y, Sun X, Li S, Wang H, Wang L, Cao J, Zhang L (2012) Biochar made from green waste as peat substitute in growth media for Calathea rotundifolia cv. Fasciata. Sci Hortic 143:15-18. doi:10.1016/j.scienta.2012.05.018  

27. Vaughn SF, Kenar JA, Eller FJ, Moser BR, Jackson MA, Peterson SC (2015) Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind Crop Prod 66:44-51 doi:10.1016/j.indcrop. 2014.12.026  

28. Vaughn SF, Kenar JA, Thompson AR, Peterson SC (2013) Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crops Prod 51:437-443. doi:10.1016/j.indcrop.2013.10.010  

29. Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar Application to Soils - A critical Scientific Review of Effects on Soil Properties, Processes and Functions. Office for the Official Publications of the European Communities Publisher, Luxembourg, Luxembourg, pp 1-166  

30. Warnock DD, Lehmann J, Kuyper KW, Rillig MC (2007) Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil 300:9-20. doi:10.1007/s11104-007-9391-5  

31. Warsaw AL, Fernandez RT, Cregg, BM, Andresen JA (2009) Water conservation, growth, and water use efficiency of container-grown woody ornamentals irrigated based on daily water use. HortScience 44:1308-1318  

32. Webber III CL, Whitworth J, Dole J (1999) Kenaf (Hibiscus cannabinum L.) core as a containerized growth medium component. Ind Crops Prod 10:97-105. doi:10.1016/S0926-6690(99)00014-X  

33. Wright RD (1986) The pour-through nutrient extraction procedure. HortScience 21:227-229  

34. Wright RD, Jackson BE, Browder JF, Latimer JG (2008) Growth of chrysanthemum in ground pine trees requires additional fertilizer. HortTechnology 18:111-115  

35. Yeager TH, Fare DC, Lea-Cox J, Ruter J, Bilderback TE, Gilliam CH, Niemiera AX, Warren SL, Whitwell TE, et al (2007) Best management practices: guide for producing container-grown plants. Southern Nurserymen’s Association, Marietta, USA   

36. Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour Technol 176:288-291. doi:10.1016/j.biortech.2014.11.011