Article | . 2018 Vol. 36, Issue. 6
Changes in the Activity of Peroxidase and Dehydrogenase in Pear Pollen During Germination under Different Storage Conditions



Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University1
Department of Horticulture, Asian Pear Research Institute, College of Agriculture and Life Sciences, Chonnam National University2




2018.. 777:788


PDF XML




The duration of room temperature (RT) exposure directly affects the performance of pollen, and loss of pollen germination occurs within 12 h of exposure to RT. A germination rate of 55.9% was observed in the moisture-treated cold storage (MC) treatment. On the other hand, germination rate was 1.2% in the heat-treated frozen storage (HF) treatment. Furthermore, the germination rate of moisture pre-treatment groups including moisture-treated frozen storage (MF), MC, and moisture-treated RT storage (MR) was higher than that of the fresh frozen storage (FF) treatment (21.9%), especially those of the MC treatment, which exhibited up to a 2.5-fold increase. The activity of dehydrogenase in the MC treatment was 3-fold higher than that in the HF treatment. However, in the HF treatment, only marginal differences in the enzyme activity were observed among the tested conditions (FF, MF, MC, and MR). There was no linear relation between pollen germination and peroxidase (POD) activity (R2 = 0.3184). The activity of POD in pear pollen revealed no significant difference among the five storage conditions tested. In the HF treatment, POD activity was observed; however, the pollen grains were considered as non-viable. In conclusion, the duration of RT exposure negatively affects pollen germination, while the moisture pre-treatment impacts positively on pollen germination. The activity of POD is not required for, or associated with, the germination of pear pollen. Our results demonstrate that dehydrogenase is a potential indicator of pollen performance in pear. In this regard, viable pollen can be discriminated from non-viable pollen by monitoring their dehydrogenase activity.



1. Alexander MP (1987) A method for staining pollen tubes in pistil. Stain Technol 62:107-112. doi:10.3109/10520298709107976  

2. Boavida LC, Becker JD, Feijó JA (2005) The making of gametes in higher plants. Int J Dev Biol 49:595-614. doi:10.1387/ijdb.052019lb  

3. Bradford MM (1976) A rapid sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3  

4. Bredemeijer GMM (1979) The distribution of peroxidase isoenzymes, chlorogenic acid oxidase and glucose-6-phosphate dehydrogenase in transmitting tissue and cortex of Nicotiana alata styles. Acta Bot Neerl 28:197-203. doi:10.1111/j.1438-8677.1979.tb00334.x  

5. Bredemeijer GMM (1984) The role of peroxidases in pistil-pollen interactions. Theor Appl Genet 68:193-206. doi:10.1007/BF00266889  

6. Caruso C, Chilosi G, Caporale C, Leonardi L, Bertini L, Magro P, Buonocore V (1999) Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci 140:107-120. doi:10.1016/S0168-9452(98)00199-X  

7. Casida LE (1977) Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl Environ Microbiol 34:630-636  

8. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Method Enzymol 2:764-775. doi:10.1016/S0076-6879(55)02300-8  

9. Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260:726-735. doi:10.1046/j.1432-1327.1999.00199.x  

10. Cohen E, Lavi U, Spiegel-Roy P (1989) Papaya pollen viability and storage. Sci Hortic 40:317-324. doi:10.1016/0304-4238(89)90105-2  

11. Cook SA, Stanley RG (1960) Tetrazolium chloride as an indicator of pine pollen germinability. Silvae Genet 9:134-136  

12. Currier HB (1957) Callose substance in plant cells. Am J Bot 44:478-488. doi:10.2307/2438916  

13. Dai M, Shi Z, Xu C (2015) Genome-wide analysis of sorbitol dehydrogenase (SDH) genes and their differential expression in two sand pear (Pyrus pyrifolia) fruits. Int J Mol Sci 16:13065-13083. doi:10.3390/ijms160613065  

14. Desborough S, Peloquin SJ (1968) Disc-electrophoresis of proteins and enzymes from styles, pollen and pollen tubes of self-incompatible cultivars of Lilium longiflorum. Theor Appl Genet 38:327-331. doi:10.1007/BF00934163  

15. Dickinson DB, Davies MD (1971) Metabolism of germinating lily pollen: pollen enzymes. In J Heslop-Harrison, ed, Pollen: Development and Physiology. Butterworth-Heinemann, Oxford, UK, pp 190-193  

16. Euler HV (1949) Biochemische untersuchungen an diploiden und triploiden espen aus normalen und Rontgen-bestrahlten pollen. Ark Kemi Miner Geol 30:1-19  

17. Henny RJ (1980) Relative humidity affects in vivo pollen germination and seed production in Dieffenbachia maculata ‘Perfection’. J Am Soc Hort Sci 105:546–548  

18. Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32-38. doi:10.1016/ j.tplants.2011.10.007  

19. Heslop-Harrison J, Heslop-Harrison Y, Shivanna KR (1984) The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theor Appl Genet 67:367-375. doi:10.1016/j.tplants.2011.10.007  

20. Heslop-Harrison JS (1992) In M Cresti, A Tiezzi​, eds, Sexual Plant Reproduction, Springer Berlin Heidelberg, Germany, pp 41-48. doi:10.1007/978-3-642-77677-9_4  

21. Johri BM, Vasil IK (1961) Physiology of pollen. Bot Rev 27:325-381. doi:10.1007/BF02860810  

22. Kim DS, Song I, Ko K (2018) Low risk of pollen-mediated gene flow in transgenic plants under greenhouse conditions. Hortic Environ Biotechnol 59:723-728. doi:10.1007/s13580-018-0074-3  

23. Kwan SC, Hanson AR, Campbell WF (1969) Storage conditions for Allium cepa L. pollen. J Am Soc Hortic Sci 94:569-570  

24. Lee SJ, Warmke HE (1979) Organelle size and number in fertile and T-cytoplasmic male-sterile corn. Am J Bot 66:141-148. doi:10.1002/ j.1537-2197.1979.tb06206.x  

25. Linskens HF (1964) Pollen physiology. Annu Rev Plant Physiol 15:255-270. doi:10.1146/annurev.pp.15.060164.001351  

26. Linskens HF (1966) Variations in the protein and enzyme pattern during pollen meiosis and pollen development. Planta 69:79-91. doi:10.1007/BF00380213  

27. Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557. doi:10.1111/j.1399-3054. 1987.tb02857.x  

28. Loupassaki M, Vasilakakis M, Androulakis I (1997) Effect of pre-incubation humidity and temperature treatment on the in vitro germination of avocado pollen grains. Euphytica 94:247-251  

29. Luza JG, Polito VS (1987) Effect of desiccation and controlled rehydration on germination in vitro of pollen of walnut (Juglans spp). Plant Cell Environ 10:487–492. doi:10.1111/j.1365-3040.1987.tb01826.x  

30. Martin FW (1968) Some enzymes of the pollen and stigma of the sweet potato. Phyton B Aires 25:97-102  

31. Miura T (2012) A mechanistic study of the formation of hydroxyl radicals induced by horseradish peroxidase with NADH. J Biochem 152:199-206. doi:10.1093/jb/mvs068  

32. Oberle GD, Watson R (1953) The use of 2, 3, 5–triphenyl tetrazolium chloride in viability tests of fruit pollens. Proc Am Soc Hort Sci 61:299–303  

33. Okunuki K (1939) Über den gaswechsel der Pollen. II. Acta Phytochim 11:27-64  

34. Op den Camp RGL, Kuhlemeier C (1997) Aldehyde dehydrogenase in tobacco pollen. Plant Mol Biol 35:355-365  

35. Ornstein L (1964) Disc electrophoresis-I. Background and theory. Background and theory. Ann New York Acad Sci 121:321-349. doi:10.1111/j.1749-6632.1964.tb14207.x  

36. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534-540. doi:10.1016/j.tplants.2004.09.002  

37. Persia D, Cai G, Del Casino C, Faleri C, Willemse MT, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618. doi:10.1104/pp.108.115956  

38. Rodriguez-Riano T, Dafni A (2000) A new procedure to asses pollen viability. Sex Plant Reprod 12:241-244. doi:10.1007/s004970050008  

39. Roggen HPJR (1967) Changes in enzyme activities during the progame phase in Petunia hybrida. Acta Bot Neerl 16:1-31. doi:10.1111/ j.1438-8677.1967.tb00031.x  

40. Rounds CM, Winship LJ, Hepler PK (2011) Pollen tube energetics: respiration, fermentation and the race to the ovule. AoB PLANTS. doi:10.1093/aobpla/plr019  

41. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591-1602. doi:10.1104/pp.125.4.1591  

42. Stanley RG, Linskens HF (1974) Pollen: Biology, Biochemistry, Management. Springer-Verlag, Berlin, Heidelberg. New York. doi:10.1007/ 978-3-642-65905-8  

43. Steinhorst L, Kudla J (2013) Calcium-a central regulator of pollen germination and tube growth. BBA-Mol Cell Res 7:1573-1581. doi:10.1016/j.bbamcr.2012.10.009  

44. Tanaka T, Fujiwara S, Nishkore S, Fukui T, Takagi M, Imanaka T (1999) A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338-5344  

45. Veidenberg AE, Safonov VI (1968) The composition of the enzymatic complex of pollen in several species and varieties of apple tree. Dokl Akad Nauk SSSR 180:1242-1245  

46. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388-393. doi:10.1016/0959-440X(92)90230-5  

47. Wilhelmi LK, Preuss D (1999) The mating game: pollination and fertilization in flowering plants. Curr Opin Plant Biol 2:18-22. doi:10.1016/S1369-5266(99)80004-1  

48. Zhou H, Yin H, Chen J, Liu X, Gao Y, Wu J (2016) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 20:11-21. doi:10.1016/j.gep.2015.10.004