Article | . 2019 Vol. 37, Issue. 2
The Growth and Development of ‘Mini Chal’ Tomato Plug Seedlings Grown under Monochromatic or Combined Red and Blue Light-Emitting Diodes



Division of Applied Life Science, Graduate School of Gyeongsang National University1
Department of Agricultural Plant Science, College of Agriculture & Life Science, Gyeongsang National University2
Institute of Agriculture & Life Science, Gyeongsang National University3
Research Institute of Life Science, Gyeongsang National University4




2019.. 190:205


PDF XML




This study was conducted to examine the effects of monochromatic or combined LEDs lighting on the growth and development of tomato plug seedlings. ‘Mini Chal’ tomato (Solanum lycopersicum L.) seedlings were grown under diniconazole or various light quality treatments [fluorescent lamp (FL), 150 mg·L-1 diniconazole treatment under FL (Dini), and combination of red (R) and blue (B) LEDs as follows: R:B = 100:0 (R), R:B = 70:30 (R7B3), R:B = 50:50 (R5B5), R:B = 30:70 (R3B7), or R:B = 0:100 (B)] for 23 days. Combined R and B lighting resulted in shorter plants except for Dini, and monochromatic or combined LEDs lighting led to thickened stems than Dini. High R light environments resulted in the highest number of leaves. The leaf area was lower for plants in all LEDs environments and Dini compared to plants in FL. Dini and all LEDs environments except B increased the leaf thickness, with the thickest leaves observed for seedlings in R3B7 among LEDs treatments. The fresh and dry weights were the highest for plants in R and R3B7, respectively. Dini, R5B5, and R3B7 slightly increased the dry matter of plants. Combined LEDs environments increased the compactness, with R3B7 resulting in the largest increase. After transplanting to hydroponics culture systems, combined LEDs lighting induced accelerated flowering of the first and second clusters. In conclusion, the results of this study suggest that R3B7 is the most suitable light environment to produce high-quality ‘Mini Chal’ tomato plug seedlings.



1. Bae JH, Park SY, Oh MM (2017) Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with Artificial Lighting. Hortic Environ Biotechnol 58:357-366. doi:10.1007/s13580-017-0331-x  

2. Bodson M (1977) Changes in the carbohydrate content of the leaf and the apical bud of Sinapis during transition to flowering. Planta 135:19-23. doi:10.1007/BF00387970  

3. Britz SJ, Sager JC (1990) Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiol 94:448-454. doi:10.1104/pp.94.2.448  

4. Buttery BR, Buzzell RI (1977) The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can J Plant Sci 57:1-5. doi:10.4141/cjps77-001  

5. Buttery BR, Buzzell RI, Findlay WI (1981) Relationships among photosynthetic rate, bean yield and other characters in field grown cultivars of soybean. Can J Plant Sci 61:191-198. doi:10.4141/cjps81-029  

6. Calatayud A, Roca D, Martinez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564-573. doi:10.1016/j.plaphy.2006.09.015  

7. Choi MK, Baek GY, Kwon SJ, Yoon YC, Kim HT (2014) Effect of LED light wavelength on lettuce growth, vitamin C and anthocyanin contents. Protected Hortic Plant Fac 23:19-25. doi:10.12791/KSBEC.2014.23.1.019  

8. Choi YH, Kwon JK, Lee JH, Kang NJ, Cho MW, Kang JS (2004) Effect of night and daytime temperatures on growth and yield of paprika ‘Fiesta’ and ‘Jubilee’. J Bio-Envrion Control 13:226-232   

9. Demmig B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171-184. doi:10.1007/BF00391092  

10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) A colorimetric determination of polysaccharides and related substances. Anal Chem 28:350-356. doi:10.1021/ac60111a017  

11. Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58:3099-3111. doi:10.1093/jxb/erm130  

12. Fondy BR, Geiger DR (1980) Effect of rapid changes in sink-source ratio on export and distribution of products of photosynthesis in leaves of Beta vulgaris L. and Phaseolus vulgaris L. Plant Physiol 66:945-949. doi:10.1104/pp.66.5.945  

13. Franklin KA, Quail PH (2009) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11-24. doi:10.1093/jxb/erp304  

14. Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63-92. doi:10.1071/PP9880063  

15. Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443-1448. doi:10.1104/pp.99.4.1443  

16. Heo JW, Lee YB, Kim DE, Chang YS, Chun C (2010) Effects of supplementary LED lighting on growth and biochemical parameters in Dieffenbachia amoena ‘Camella’ and Ficus elastica ‘Melany’. Korean J Hortic Sci Technol 28:51-58  

17. Hesketh JD, Ogren WL, Hageman ME, Peters DB (1981) Correlations among leaf CO-exchange rates, areas and enzyme activities among soybean cultivars. Photosynth Res 2:21-30. doi:10.1007/BF00036162  

18. Hoenecke ME, Bula RJ, Tibbitts TW (1992) Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427-430. doi:10.21273/HORTSCI.27.5.427  

19. Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Iperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107-3117. doi:10.1093/jxb/erq132  

20. Hopkins WG, Hüner N (2004) Introduction to plant physiology, 3rd ed. John Wiley and Sons, Hoboken, NJ, USA  

21. Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M (2003) Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol 23:199-204. doi:10.1093/treephys/23.3.199  

22. Im JU, Yoon YC, Seo KW, Kim KH, Moon AK, Kim HT (2013) Effect of LED light wavelength on chrysanthemum growth. Protected Hortic Plant Fac 22:49-54. doi:10.12791/KSBEC.2013.22.1.049  

23. Jean D, Lapointe L (2001) Limited carbohydrate availability as a potential cause of fruit abortion in Rubus chamaemorus. Physiol Plant 112:379-387. doi:10.1034/j.1399-3054.2001.1120311.x  

24. Jeon YM, Son KH, Kim SM, Oh MM (2018) Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation. Hortic Environ Biotechnol 59:659-670. doi:10.1007/s13580-018-0076-1  

25. Jeong BR, Hwang SJ, Kang NJ (2016) Plug seedling. Gs Press, Jinju, South Korea, p 11  

26. Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. doi:10.21273/HORTSCI.45.12.1809  

27. Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of day length extensions). Plant Physiol 105:141-149. doi:10.1104/pp.105.1.141  

28. Kang SB, Jang HI, Lee IB, Park JM, Moon DK (2008) Effect of waterlogging condition on the photosynthesis of ‘Campbell Early’ grapevine. Korean J Hortic Sci Technol 26:372-379  

29. Kebrom TH, Mullet JE (2016) Transcriptome profiling of tiller buds provides new insights into PhyB regulation of tillering and indeterminate growth in sorghum. Plant Physiol 170:2232-2250. doi:10.1104/pp.16.00014  

30. Kim HC, Cho YH, Ku YG, Bae JH (2015) Seedling qualities of hot pepper according to seedling growth periods and growth and yield after planting. Korean J Hortic Sci Technol 33:839-844. doi:10.7235/hort.2015.15083  

31. Kim OI, Chae YS, Jeong BR (1999) Effect of day/night temperatures, and N concentration and NH:NO ratio of nutrient solution on the differentiation of flower buds, node of early fruit set, and growth of ‘Sukwang’ tomato. J Kor Soc Hortic Sci 40:287-293  

32. Kim YJ, Kim HM, Hwang SJ (2016) Growth and phytochemical contents of ice plant as affected by light quality in a closed-type plant production system. Korean J Hortic Sci Technol 34:878-885  

33. Kim YJ, Kim HM, Kim HM, Jeong BR, Lee HJ, Kim HJ, Hwang SJ (2018) Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light‑emitting diodes. Hortic Environ Biotechnol 59:529-536. doi:10.1007/s13580- 018-0058-3  

34. Kitaya Y, Niu G, Kozai T, Ohashi M (1998) Photosynthetic photon flux, photoperiod, and CO concentration affect growth and morphology of lettuce plug transplants. HortScience 33:988-991. doi:10.21273/HORTSCI.33.6.988  

35. Lee JE, Shin YS, Do HW, Cheung JD, Kang YH (2016a) Effect of seedling quality and growth after transplanting of Korean melon nursed under LED light sources and intensity. Protected Hortic Plant Fac 4:294-301. doi:10.12791/KSBEC.2016.25.4.294  

36. Lee JG, Oh SS, Cha SH, Jang YA, Kim SY, Um YC, Cheong SR (2010) Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J Bio-Environ 19:351-359  

37. Lee JS, Lee HI, Kim YH (2012) Seedling quality and early yield after transplanting of paprika nursed under light-emitting diodes, fluorescent lamps and natural light. J Bio-Environ 21:220-227  

38. Lee M, Park S, Cho E, An J, Choi E (2018) Changes of plant growth, leaf morphology and cell elongation of Spinacia oleracea grown under different light-emitting diodes. Protected Hortic Plant Fac 27:220-230. doi:10.12791/KSBEC.2018.27.3.222  

39. Lee MJ, Son KH, Oh MM (2016b) Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Envrion Biotechnol 57:139-147. doi:10.1007/s13580-016-0133-6  

40. Lim S-C, Kim S-K, Youn C-K, Kim Y-H, Kim D-H, Youn T (2003) Effect of forcing culture system on leaf starch and mineral content of peaches. J Kor Soc Hortic Sci 44:76-81  

41. Liu XY, Chang TT, Guo SR, Xu ZG, Li J (2009) Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. Acta Hortic 907:325-330. doi:10.17660/ActaHortic.2011.907.53  

42. Long SP, Humphries S, Ealkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Biol 45:633-662. doi:10.1146/annurev.pp.45.060194.003221  

43. Matsuda RK, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459-465. doi:10.1111/j.1747-0765.2007.00150.x  

44. McAvoy RJ (1988) Plug production for bedding plants. Connecticut Greenhouse Newletter 147:1-3  

45. Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073-2082  

46. Nam T, Lim YJ, Eom SH (2018) Flavonoid accumulation in common buckwheat (Fagopyrum esculentum) sprout tissues in response to light. Hortic Environ Biotechnol 59:19-27. doi:10.1007/s13580-018-0003-5  

47. NeSmith DS (1993) Transplant age influences summer squash growth and yield. HortScience 28:618-620. doi:10.21273/HORTSCI.28.6.618  

48. Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Cult 73:43-52. doi:10.1023/A:1022638508007  

49. Nishimura T, Ohyama K, Goto E, Inagaki N (2009) Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci Hortic 122:134-137. doi:10.1016/j.scienta.2009.03.010  

50. Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189-198. doi:10.2525/ecb.45.189  

51. Park GS, Kim YC, Ann SW, Kang HK, Choi JM (2015) Influence of various root media in pot growth of ‘Seolhyang’ strawberry on the growth of daughter plants and early yield after transplant. Korean J Hortic Sci Technol 33:219-226. doi:10.7235/hort.2015.14122  

52. Peng SA, Iwahori S (1994) Morphological and cytological changes in apical meristem during flower bud differentiation of Japanese pear, Pyrus pyrifolia. J Jpn Soc Hortic Sci 63:313-321. doi:10.2503/jjshs.63.313  

53. Peppler KZ (1990) Plug vs. direct-seeding. Greenhouse Manager February 1990:47-51  

54. Rodrigo J, Hormaza JI, Herrero M (2000) Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiol Plant 108:35-41. doi:10.1034/j.1399-3054.2000.108001035.x  

55. Ruiz R, Garcia-Luis A, Honerri C, Guardiola JL (2001) Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann Bot 87:805-812. doi:10.1006/anbo.2001.1415  

56. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In HD Behnke, U Lfittge, K Esser, JW Kadereit, M Runge, eds, Progress in botany /Fortschritte der Botanik, Springer, Berlin Heidelberg, Germany, pp 151-173. doi:10.1007/978-3-642-78020-2_8  

57. Shimizu H, Saito Y, Nakashima H, Miyasaka J, Ohdoi K (2011) Light environment optimization for lettuce growth in plant factory. Paper presented at the 18th IFAC World Congress, Milano, Italy, September 2011, pp 605-609. doi:10.3182/20110828-6-IT-1002.02683  

58. Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339-343. doi:10.1007/s11738-007-0128-0  

59. Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840-844. doi:10.1046/j.1365-3040.1997.d01-104.x  

60. Son KH, Kim EY, Oh MM (2018) Growth and development of cherry tomato seedlings grown under various combined ratios of red to blue LED lights and fruit yield and quality after transplanting. Protected Hortic Plant Fac 27:54-63. doi:10.12791/KSBEC.2018.27.1.54  

61. Son KH, Oh MM (2013) Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988  

62. Son KH, Park JH, Kim DI, Oh MM (2012) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 30:664-672. doi:10.7235/hort.2012.12063  

63. Sonneveld C, Straver N (1994) Nutrient solutions for vegetables and flowers grown in water on substrates. Research Station for Floriculture and Glasshouse Vegetables, Aalsmeer/Naaldwijk. In The Netherlands Series: Voedingsoplossingen glastuinbow 8:45  

64. Streb S, Zeeman SC (2012) Starch metabolism in Arabidopsis. The Arabidopsis Book/Am Soc Plant Biol 10:e0160. doi:10.1199/tab.0160  

65. Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998) In vitro growth of plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J Hortic Sci Biotechnol 73:39-44. doi:10.1080/14620316.1998.11510941  

66. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684-697. doi:10.1093/pcp/pcp034  

67. Tsukaya H (2004) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547-555. doi:10.1387/ijdb.041921ht  

68. Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B: Biol 96:30-37. doi:10.1016/j.jphotobiol.2009.03.010  

69. White JM (1980) Cabbage yield, head weight, and size as affected by plant growing containers. Proc Florida State Hortic Soc 93:266-267  

70. Whitwell JD, Crofts J (1972) Studies on the size of cauliflower transplants in relation to field performance with particular reference to date of maturity and length of cutting period. Exp Hortic 23:34-42  

71. Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303-1310. doi:10.1093/pcp/pce183  

72. Yeh N, Chung JP (2009) High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energy Rev 13:2175-2180. doi:10.1016/j.rser.2009.01.027