Article | . 2019 Vol. 37, Issue. 2
Effect of Light Quality on Physiological Disorder, Growth, and Secondary Metabolite Content of Water Spinach (Ipomoea aquatica Forsk) Cultivated in a Closed-type Plant Production System



Graduate School of Horticulture, Chiba University1
Center for Environment, Health and Field Sciences, Chiba University2




2019.. 206:218


PDF XML




Light quality is a critical factor that affects plant quality, including phytochemical accumulation and marketable characteristics, in closed-type plant production systems. The purpose of this study was to determine the appropriate light quality for production of good quality water spinach in terms of its appearance and accumulation of phytochemicals in an artificial environment. Plants were hydroponically cultured under five different light quality conditions: red, blue, green, red and blue (as a control), and red and blue with far red at a photosynthetic photon flux density of 200 µmol·m-2·s-1 for 14 days after transplantation. Shoot (stem and leaf) fresh weights (FW) under red-containing light conditions increased more than 39.7% compared to that under monochromatic blue light, and monochromatic red light produced significantly higher stem FW but lower leaf FW compared to that under blue-containing light conditions. Monochromatic blue light significantly increased the antioxidant activity capacity in leaves and stems more than 210.0% compared to other treatments. However, blue-containing light significantly stimulated physiological disorder (intumescence injury) in stems and suppressed stem elongation compared to monochromatic red or green light. Monochromatic red light reduced the number of intumescent lesions by 95.8% and enhanced stem elongation compared to control. These findings suggest that red-rich light promotes growth of water spinach with less intumescence.



1. Abe I, Kamimura S, Owada T (1964) Some observations on stem abnormality of tomato plants. Bull Hortic Res Station Ser C, Morioka 2:83-93  

2. Allen JF (2003) State transitions - A question of balance. Science 80:299:1530-1532. doi:10.1126/science.1082833  

3. Austin DF (2007) Water spinach (, Convolvulaceae) a food gone wild. Ethnobot Res Appl 5:123-146. doi:10.17348/ era.5.0.123-146  

4. Bach A, Kapczyńska A, Dziurka K, Dziurka M (2018) The importance of applied light quality on the process of shoot organogenesis and production of phenolics and carbohydrates in Lachenalia sp. cultures in vitro. South Afri J Bot 114:14-19. doi:10.1016/j.sajb.2017.10.015  

5. Bantis F, Ouzounis T, Radoglou K (2016) Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci Hortic 198:277-283. doi:10.1016/j.scienta.2015.11.014  

6. Bian ZH, Yang QC, Liu WK (2015) Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J Sci Food Agric 95:869-877. doi:10.1002/jsfa.6789  

7. Craver JK, Miller CT, Williams KA, Bello NM (2014) Ultraviolet radiation affects intumescence development in ornamental sweetpotato (Ipomoea batatas). HortScience 49:1277-1283. doi:10.21273/HORTSCI.49.10.1277  

8. Douglas GE (1907) The formation of intumescences on potato plants. Bot Gaz 43:233-250. doi:10.1086/329170  

9. Duysens LNM, Amesz J (1962) Function and identification of two photochemical systems in photosynthesis. Biochim Biophys Acta 64:243-260. doi:10.1016/0006-3002(62)90735-7  

10. Eguchi T, Hernández R, Kubota C (2016) Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. HortScience 51:712-719. doi:10.21273/HORTSCI.51.6.712  

11. Emerson R, Lewis CMI (1943) The Dependence of the quantum yield of chlorella photosynthesis on wave lenghth of light. Am J Bot 30:165-178. doi:10.1002/j.1537-2197.1943.tb14744.x  

12. Franck F, Juneau P, Popovic R (2002) Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239-246. doi:10.1016/S0005-2728(02)00366-3  

13. Gonçalves S, Gomes D, Costa P, Romano A (2013) The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind Crops Prod 43:465-471. doi:10.1016/j.indcrop.2012.07.066  

14. Grimbly P (1986) Disorders. In J. Atherton, J Rudich, eds, The tomato crop: A scientific basis for improvement, Ed 1, Chapman and Hall Ltd., NY, USA, pp 368-389. doi:10.1007/978-94-009-3137-4_9  

15. Hajiboland R, Farhanghi F, Aliasgharpour M (2012) Morphological and anatomical modifications in leaf, stem and roots of four plant species under boron deficiency conditions. An Biol 34:15-29. doi:10.6018/analesbio.0.34.4  

16. Heo JW, Kang DH, Bang HS, Hong SG, Chun C, Kang KK (2012) Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean J Hortic Sci Technol 30:6-12. doi:10.7235/hort.2012.11118  

17. Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 24:1921-1935. doi:10.1105/tpc.112.097972  

18. Johkan M, Shoji K, Goto F, Hashida S nosuke, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. doi:10.21273/HORTSCI.45.12.1809  

19. Kim SJ, Hahn EJ, Heo JW, Paek KY (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic101:143-151. doi:10.1016/j.scienta.2003.10.003  

20. Kubota C, Eguchi T, Kroggel M (2017) UV-B radiation dose requirement for suppressing intumescence injury on tomato plants. Sci Hortic 226:366-371. doi:10.1016/j.scienta.2017.09.006  

21. Lang S, Tibbitts T (1983) Factors controlling intumescence development on tomato plants. J Am Soc Hortic Sci 108:93-98  

22. Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86-91. doi:10.1016/j.scienta.2012.10.002  

23. Liu H, Fu Y, Hu D, Yu J, Liu H (2018) Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out.” Sci Hortic 236:10-17. doi:10.1016/j.scienta.2018.03.027  

24. Mccann JA, Arkin LN, Williams JD (1996) Nonindigenous Aquatic and Semi-Aquatic Plants in Freshwater Systems. In Nonindigenous aquatic and selected terrestrial species of Florida. National Biological Service Southeastern Biological Science Center, Florida, USA, pp 27-55  

25. Morrow RC, Tibbitts TW (1988) Evidence for involvement of phytochrome in tumor development on plants. Plant Physiol 88:1110-1114. doi:10.1104/pp.88.4.1110  

26. Park Y, Runkle ES (2017) Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ Exp Bot 136:41-49. doi:10.1016/j.envexpbot.2016.12.013  

27. Prasad KN, Shivamurthy GR, Aradhya SM (2008) , An underutilized green leafy vegetable:A Review. Int J Bot 4:123-129. doi:10.3923/ijb.2008.123.129  

28. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290-4302. doi:10.1021/jf0502698  

29. Sandquist DR, Ehleringer J (2015) Chapter 9. Photosynthesis: Physiological and ecological considerations. In L Taiz, E Zeiger, IM Møller, A Murphy, eds, Plant physiology and development, Ed 6, Sinauer Associates, Inc., MA, USA, pp 245-268  

30. Savvides A, Fanourakis D, Van Ieperen W (2012) Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J Exp Bot 63:1135-1143. doi:10.1093/jxb/err348  

31. Schuerger AC, Brown CS, Stryjewski EC (1997) Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot 79:273-282. doi:10.1006/anbo.1996.0341  

32. Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339-343. doi:10.1007/s11738-007-0128-0  

33. Son KH, Oh MM (2013) Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988  

34. Son KH, Oh MM (2015) Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biotechnol 56:639-653. doi:10.1007/s13580-015-1064-3  

35. Son KH, Park JH, Kim D, Oh MM (2013) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 31:664-672  

36. Tabata K, Oba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J 27:139-148. doi:10.1046/j.1365-313x.2001.01074.x  

37. Taiz L, Murphy A, Christie J, Sullivan JH (2015) Signals from sunlight. In L Taiz, E Zeiger, IM Møller, M Angus, eds, Plant physiology and development, Ed 6, Sinauer Associates, Inc., MA, USA, pp 447-476  

38. Umar KJ, Hassan LG, Dangoggo SM, Ladan MJ (2007) Nutritional composition of water spinach ( Forsk.) leaves. J Appl Sci 7:803-809. doi:10.3923/jas.2007.803.809  

39. Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B Biol 96:30-37. doi:10.1016/j.jphotobiol.2009.03.010  

40. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant physiol 144:307-313. doi:10.1016/S0176-1617(11)81192-2  

41. Wills RBH, Rangga A (1996) Determination of carotenoids in Chinese vegetables. Food Chem 56:451-455. doi:10.1016/0308-8146(95) 00226-X  

42. Wollaeger HM, Runkle ES (2015) Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 50:522-529. doi:10.21273/HORTSCI.50.4.522  

43. Yang LY, Wang LT, Ma JH, Ma ED, Li JY, Gong M (2017) Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica 55:467-477. doi:10.1007/ s11099-016-0668-x  

44. Zhang L, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M (2015) Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs. Plant Sci 233:134-142. doi:10.1016/j.plantsci.2015.01.010  

45. Zheng L, Labeke M-C (2018) Effects of different irradiation levels of light quality on Chrysanthemum. Sci Hortic 233:124-131. doi: 10.1016/j.scienta.2018.01.033