Article | . 2019 Vol. 37, Issue. 2
Molecular Characterization and Expression of the Cinnamyl Alcohol Dehydrogenase Gene Family in Sweet Potato (Ipomoea batatas) under Environmental Stresses



Ubiquitous healthcare research center, Inje University1
Institute of Digital Anti-Aging Healthcare, Graduate School of Inje University 2
Department of Healthcare Information Technology, Inje University 3




2019.. 279:289


PDF XML




Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis and is a key enzyme for lignification. Most of the CAD genes in angiosperms belong to a multigene family. As in other plants, 13 cDNAs encoding CAD (IbCADs) were isolated from the expressed sequence tag (EST) library of sweet potato (Ipomoea batatas). A phylogenetic analysis revealed that IbCADs belonged to the nondevelopmental CAD proteins, which are not conserved as bona fide CADs. The IbCAD proteins were classified into four groups (Groups I-IV) according to their amino acid similarity. In all groups, IbCADs contain the Zn-binding domains, suggesting that they belong to a family of zinc-dependent alcohol dehydrogenases. Each group showed sequence divergence in the residues related in substrate specificity. Different structural characteristics of IbCADs were supported by their different transcriptional expression patterns. The IbCAD genes in four groups were highly induced in response to environmental stresses (cold, H2O2, and wounding), but each group showed different patterns and levels of expression. The differential response of the IbCAD gene family under different stresses might indicate a more complex nature of the CAD gene expression in sweet potato. These diverse expression patterns represented an important function of each IbCAD gene in tolerance to environmental stresses. To the best of our knowledge, this is the first study to characterize genes of the CAD family genes in a root crop. These results could be useful in understanding the physiological roles and characteristics of the IbCAD multigene family.



1. Barakat A, Bagniewska-Zadmorna A, Choi A, Plakkat U, Diloreto DS, Yellanki P, Carlson JE (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization and expression. BMC Plant Biol 9:26. doi:10.1186/1471-2229-9-26  

2. Blanco-Portales R, Medina-Escobar N, Lopez-Raez JA, Gonzalez-Reyes, Villalba JM, Moyano E, Caballero JL, Muñoz-Blanco J (2001) Cloning, expression and immunolocalization pattern of a cinnamyl alcohol dehydrogenase gene from strawberry (Fragaria × ananassa cv. Chandler). J Exp Bot 53:1723-1734. doi:10.1093/jxb/erf029  

3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519-546. doi:10.1146/annurev.arplant.54.031902.134938  

4. Bomati EK, Noel JP (2005) Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 17:1598-1611. doi:10.1105/tpc.104.029983  

5. Brill EM, Abrahams S, Hayes CM, Jenkns CLD, Watson JM (1999) Molecular characterization and expression of a wound-inducible cDNA encoding a novel cinnamyl alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.). Plant Mol Biol 41:279-291. doi:10.1023/A:1006381630494  

6. Cheng H, Li L, Xu F, Cheng S, Cao F, Wang Y, Yuan H, Jiang D, Wu C (2013) Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40:707-721. doi:10.1007/s11033-012- 2111-0  

7. Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Cai Y, Lin Y (2017) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6:1602-1613. doi:10.1242/bio.026997  

8. Choi B, Chung JY, Bae HJ, Bae I, Park S, Bae H (2016) Functional characterization of cinnamyl alcohol dehydrogenase during developmental stages and under various stress conditions in kenaf (Hibiscus cannabinus L.). Bioresources 11:105-125   

9. Eom SH, Kim H, Hyun TK (2016) The cinnamyl alcohol dehdydrogenase (CAD) gene family in flax (Linum usitatissimum L.): insight from expression profiling of CADs induced by elicitors in cultured flax cells. Arch Biol Sci 68:603-612. doi:10.2298/ABS150921050E  

10. Eudes A, Pollet B, Sibout R, Do CT, Seguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of thaliana. Planta 225:23-39. doi:10.1007/s00425-006-0326-9  

11. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H Jr, Ernst D (1993) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23:145-156. doi:10.1007/BF00021427  

12. Guo DM, Ran JH, Wang XQ (2010) Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: The emergence of real lignin is associated with the origin of CAD. J Mol Evol 71:202-218. doi:10.1007/s00239-010-9378-3  

13. Kiedrowski S, Kawalleck P, Hahlbrock K, Somssich IE, Dangl E (1992) Rapid activation of a novel plant defense gene is strictly dependent on the RPM1 disease resistance locus. EMBO J 11:4677-4684. doi:10.1002/j.1460-2075.1992.tb05572.x  

14. Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during thaliana growth and development: Lessons for database annotations? Phytochemistry 68:1957-1974. doi:10.1016/j.phytochem.2007.02.032  

15. Kim SJ, Kim MR, Bedgar KL, Moinuddin SGA, Cardenas CL, Davin LB, Kang CH, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in . Proc Natl Acad Sci USA 101:1455-1460. doi:10.1073/pnas.0307987100  

16. Kim YH, Bae JM, Huh GH (2010) Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress. Plant Cell Rep 29:779-791. doi:10.1007/s00299-010-0864-2  

17. Kim YH, Huh GH (2013) Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants. J Plant Biotechnol 40:9-17. doi:10.5010/JPB.2013.40.1.009  

18. Kim YH, Hur CG, Shin YH, Bae JM, Song YS, Huh GH (2006) Identification and characterization of highly expressed genes in suspension-cultured cells of sweet potato. J Plant Biol 49:364-370. doi:10.1007/BF03178813  

19. Lauvergeat V, Kennedy K, Feuillet C, McKie JH, Gorrichon L, Baltas M, Boudet AM, Grima-Pettenati J, Douglas KT (1995) Site-directed mutagenesis of a serine residue in cinnamyl alcohol dehydrogenase, a plant NADPH-dependent dehydrogenase, affects the specificity for the coenzyme. Biochemistry 34:12426-12434. doi:10.1021/bi00038a041  

20. Levine A, Tenhaken R, Dixon R, Lamb C (1994) HO from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593. doi:10.1016/0092-8674(94)90544-4  

21. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperm is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567-1585. doi:10.1105/tpc.13.7.1567  

22. Logemann E, Reinold S, Somssich IE, Hahlbrock K (1997) A novel type of pathogen-related cinnamyl alcohol dehydrogenase. Biol Chem 378:909-913. doi:10.1515/bchm.1997.378.8.909  

23. Lukatkin AS, Brazaityte A, Bobinas C, Duchovskis P (2012) Chilling injury in chilling-sensitive plants: a review. Agriculture 99:111-124   

24. Lynch D, Lidgett A, Mclnnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterization of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). J Plant Physiol 159:653-660. doi:10.1078/ 0176-1617-0776  

25. Mitchell HJ, Hall JL, Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104:551-556. doi:10.1104/pp.104.2.551  

26. Nicholas KB, Nicholas Jr HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNET News 4:14   

27. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358   

28. Preisner M, Wojtasik W, Kostyn K, Boba A, Czuj T, Szopa J, Kulma A (2018) The cinnamyl alcohol dehydrogenase family in flax: Differentiation during plant growth and under stress conditions. J Plant Physiol 221:132-143. doi:10.1016/j.jplph.2017.11.015  

29. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genome-wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum (Sorghum bicolor (L.) Moench) identities SbCAD2 as the Brown midrib6 gene. Genetics 181:783-795. doi:10.1534/ genetics.108.098996  

30. Sasaki K, Hiraga S, Ito H, Seo S, Matsui H, Ohashi Y (2002) A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol 43:108-117. doi:10.1093/pcp/pcf013  

31. Schmelzer E, Kruger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1:993-1001. doi:10.1105/tpc.1.10.993  

32. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Seguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in . Isolation and characterization of the corresponding mutants. Plant Physiol 132:848-860. doi:10.1104/pp.103.021048  

33. Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19:257-268. doi:10.1007/s11738-997-0001-1  

34. Tobias CM, Chow EK (2005) Structure of the cinnamyl alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678-688. doi:10.1007/s00425-004-1385-4